BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35271205)

  • 21. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-aided diagnosis based on enhancement of degraded fundus photographs.
    Jin K; Zhou M; Wang S; Lou L; Xu Y; Ye J; Qian D
    Acta Ophthalmol; 2018 May; 96(3):e320-e326. PubMed ID: 29090844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-image mosaic of infant retinal fundus: selection and registration of the best-quality frames from videos.
    Poletti E; Benedetti G; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5883-6. PubMed ID: 24111077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of the optic disc in images of the retina using the Hough transform.
    Zhu X; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3546-9. PubMed ID: 19163474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems.
    Hacisoftaoglu RE; Karakaya M; Sallam AB
    Pattern Recognit Lett; 2020 Jul; 135():409-417. PubMed ID: 32704196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
    Fu D; Tong H; Zheng S; Luo L; Gao F; Minar J
    Biomed Eng Online; 2016 Jul; 15(1):87. PubMed ID: 27449218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The retinal disease screening study: retrospective comparison of nonmydriatic fundus photography and three-dimensional optical coherence tomography for detection of retinal irregularities.
    Ouyang Y; Heussen FM; Keane PA; Sadda SR; Walsh AC
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5694-700. PubMed ID: 23847317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generative Image Inpainting for Retinal Images using Generative Adversarial Networks.
    Magister LC; Arandjelovic O
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2835-2838. PubMed ID: 34891838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing retinal fundus photomontages. A new computer-based method.
    Mahurkar AA; Vivino MA; Trus BL; Kuehl EM; Datiles MB; Kaiser-Kupfer MI
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1675-83. PubMed ID: 8675411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of suitable fundus images using automated quality assessment methods.
    Şevik U; Köse C; Berber T; Erdöl H
    J Biomed Opt; 2014 Apr; 19(4):046006. PubMed ID: 24718384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autonomous Stabilization of Retinal Videos for Streamlining Assessment of Spontaneous Venous Pulsations.
    Sheng H; Yu X; Wang F; Khan MW; Weng H; Shariflou S; Golzan SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of Smartphone-Based Retinal Photography for Diabetic Retinopathy Screening.
    Bilong Y; Katte JC; Koki G; Kagmeni G; Obama OPN; Fofe HRN; Mvilongo C; Nkengfack O; Bimbai AM; Sobngwi E; Mbacham W; Mbanya JC; Bella LA; Sharma A
    Ophthalmic Surg Lasers Imaging Retina; 2019 May; 50(5):S18-S22. PubMed ID: 31100178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of transformation models for the sequential mosaicing of long retinal sequences of slit-lamp images obtained in a closed-loop motion.
    Prokopetc K; Bartoli A
    Int J Comput Assist Radiol Surg; 2016 Dec; 11(12):2163-2172. PubMed ID: 27325139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(13):1-22. PubMed ID: 23074517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical validation of a smartphone-based handheld fundus camera for the evaluation of optic nerve head.
    Titoneli CC; Filho MS; Lencione D; Vieira FP; Stuchi JA; Paula JS
    Arq Bras Oftalmol; 2021; 84(6):531-537. PubMed ID: 34320110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles.
    Zhu X; Rangayyan RM; Ells AL
    J Digit Imaging; 2010 Jun; 23(3):332-41. PubMed ID: 19238486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.
    M S; Issac A; Dutta MK
    Int J Med Inform; 2018 Feb; 110():52-70. PubMed ID: 29331255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.