These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35271253)

  • 21. Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes.
    Wang S; Xiong L; Bi J; Zhang X; Yang G; Yang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27009-27018. PubMed ID: 30040371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen reduction reaction on Pt-skin Pt
    Haile AS; Yohannes W; Mekonnen YS
    RSC Adv; 2020 Jul; 10(46):27346-27356. PubMed ID: 35516936
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Lin XM; Wang XT; Deng YL; Chen X; Chen HN; Radjenovic PM; Zhang XG; Wang YH; Dong JC; Tian ZQ; Li JF
    Nano Lett; 2022 Jul; 22(13):5544-5552. PubMed ID: 35699945
    [No Abstract]   [Full Text] [Related]  

  • 24. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
    Zhang H; Zhang XG; Wei J; Wang C; Chen S; Sun HL; Wang YH; Chen BH; Yang ZL; Wu DY; Li JF; Tian ZQ
    J Am Chem Soc; 2017 Aug; 139(30):10339-10346. PubMed ID: 28700232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activating Pd by morphology tailoring for oxygen reduction.
    Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD
    J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study.
    Zhu H; Liu H; Yang L; Xiao B
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31085995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.
    Zhou WP; Yang X; Vukmirovic MB; Koel BE; Jiao J; Peng G; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2009 Sep; 131(35):12755-62. PubMed ID: 19722720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe(II)-Assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR.
    Cao Y; Xiahou Y; Xing L; Zhang X; Li H; Wu C; Xia H
    Nanoscale; 2020 Oct; 12(39):20456-20466. PubMed ID: 33026009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts.
    Feng Y; Shao Q; Ji Y; Cui X; Li Y; Zhu X; Huang X
    Sci Adv; 2018 Jul; 4(7):eaap8817. PubMed ID: 30027113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Design of Ni
    Jia J; Tian D
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical Modelling and Facile Synthesis of a Highly Active Boron-Doped Palladium Catalyst for the Oxygen Reduction Reaction.
    Vo Doan TT; Wang J; Poon KC; Tan DC; Khezri B; Webster RD; Su H; Sato H
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6842-7. PubMed ID: 27086729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks.
    Wannakao S; Maihom T; Kongpatpanich K; Limtrakul J; Promarak V
    Phys Chem Chem Phys; 2017 Nov; 19(43):29540-29548. PubMed ID: 29082388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Zhang H; Wang C; Sun HL; Fu G; Chen S; Zhang YJ; Chen BH; Anema JR; Yang ZL; Li JF; Tian ZQ
    Nat Commun; 2017 May; 8():15447. PubMed ID: 28537269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy.
    Chen HQ; Ze H; Yue MF; Wei DY; A YL; Wu YF; Dong JC; Zhang YJ; Zhang H; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202117834. PubMed ID: 35068043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized oxygen reduction activity by tuning shell component in Pd@Pt-based core-shell electrocatalysts.
    Zhang Y; Ye K; Gu Q; Jiang Q; Qin J; Leng D; Liu Q; Yang B; Yin F
    J Colloid Interface Sci; 2021 Dec; 604():301-309. PubMed ID: 34265687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing Interfacial Electronic and Catalytic Properties on Well-Defined Surfaces by Using In Situ Raman Spectroscopy.
    Wang YH; Liang MM; Zhang YJ; Chen S; Radjenovic P; Zhang H; Yang ZL; Zhou XS; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11257-11261. PubMed ID: 29998625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts.
    Jiang K; Wang P; Guo S; Zhang X; Shen X; Lu G; Su D; Huang X
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):9030-5. PubMed ID: 27253520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.