These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35271289)

  • 21. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy.
    Pan X; Yang F; Chen S; Zhu X; Wang C
    Langmuir; 2018 May; 34(18):5273-5278. PubMed ID: 29672067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation?
    de Beer AG; Roke S
    J Chem Phys; 2016 Jul; 145(4):044705. PubMed ID: 27475384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact of oil with solid surfaces in aqueous media probed using sum frequency generation spectroscopy.
    Hsu PY; Dhinojwala A
    Langmuir; 2012 Feb; 28(5):2567-73. PubMed ID: 22206274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C
    Schulze-Zachau F; Braunschweig B
    Phys Chem Chem Phys; 2019 Apr; 21(15):7847-7856. PubMed ID: 30916092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the double layer structure of 1-butyl-3-methylimidazolium thiocyanate at the air-water interface using sum-frequency generation vibrational spectroscopy.
    Wang B; Duan Y; Bai Y; Zhang W; Peng J; Bian H
    J Chem Phys; 2024 Oct; 161(13):. PubMed ID: 39351949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Re-orientation of water molecules in response to surface charge at surfactant interfaces.
    Dutta C; Mammetkuliyev M; Benderskii AV
    J Chem Phys; 2019 Jul; 151(3):034703. PubMed ID: 31325949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of Stern Layer Water Molecules, Total Potentials, and Energy Densities at Fused Silica:Water Interfaces for Adsorbed Alkali Chlorides, CTAB, PFOA, and PFAS.
    Chang H; Lozier EH; Ma E; Geiger FM
    J Phys Chem A; 2023 Oct; 127(40):8404-8414. PubMed ID: 37775181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spiropyran Sulfonates for Photo- and pH-Responsive Air-Water Interfaces and Aqueous Foam.
    Schnurbus M; Kabat M; Jarek E; Krzan M; Warszynski P; Braunschweig B
    Langmuir; 2020 Jun; 36(25):6871-6879. PubMed ID: 32049534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption behavior of lauric acid at heptane/water interface as studied by second harmonic generation spectroscopy and interfacial tensiometry.
    Yamaguchi A; Uchida T; Nochi K; Yamashita T; Teramae N
    Anal Sci; 2004 Nov; 20(11):1523-7. PubMed ID: 15566143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sum frequency vibrational spectroscopy of leucine molecules adsorbed at air-water interface.
    Ji N; Shen YR
    J Chem Phys; 2004 Apr; 120(15):7107-12. PubMed ID: 15267614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.
    Engelhardt K; Weichsel U; Kraft E; Segets D; Peukert W; Braunschweig B
    J Phys Chem B; 2014 Apr; 118(15):4098-105. PubMed ID: 24678897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential-Induced Adsorption and Structuring of Water at the Pt(111) Electrode Surface in Contact with an Ionic Liquid.
    Kemna A; Braunschweig B
    J Phys Chem Lett; 2020 Sep; 11(17):7116-7121. PubMed ID: 32787322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH effects on molecular adsorption and solvation of p-nitrophenol at silica/aqueous interfaces.
    Woods BL; Walker RA
    J Phys Chem A; 2013 Jul; 117(29):6224-33. PubMed ID: 23701438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the Bovine Hemoglobin Adsorption Process and its Influence on Interfacial Water Structure at the Air-Water Interface.
    Chaudhary S; Kaur H; Kaur H; Rana B; Tomar D; Jena KC
    Appl Spectrosc; 2021 Dec; 75(12):1497-1509. PubMed ID: 34346774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structuring of interfacial water on silica surface in cyclohexane studied by surface forces measurement and sum frequency generation vibrational spectroscopy.
    Mizukami M; Kobayashi A; Kurihara K
    Langmuir; 2012 Oct; 28(40):14284-90. PubMed ID: 22974462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant Interactions and Organization at the Gas-Water Interface (CTAB with Added Salt).
    Yazhgur P; Vierros S; Hannoy D; Sammalkorpi M; Salonen A
    Langmuir; 2018 Feb; 34(5):1855-1864. PubMed ID: 29309160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance.
    York RL; Holinga GJ; Somorjai GA
    Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.
    Ding B; Jasensky J; Li Y; Chen Z
    Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.