BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35271449)

  • 21. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    J Neuroeng Rehabil; 2018 Apr; 15(1):33. PubMed ID: 29661237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A kinesthetic washout filter for force-feedback rendering.
    Danieau F; Lecuyer A; Guillotel P; Fleureau J; Mollet N; Christie M
    IEEE Trans Haptics; 2015; 8(1):114-8. PubMed ID: 25532190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and realization of a novel haptic graspable interface for augmenting touch sensations.
    Pediredla VK; Chandrasekaran K; Annamraju S; Thondiyath A
    Front Robot AI; 2022; 9():927660. PubMed ID: 36246493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Cutaneous Feedback on the Perceived Hardness of a Virtual Object.
    Park J; Oh Y; Tan HZ
    IEEE Trans Haptics; 2018; 11(4):518-530. PubMed ID: 30004888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients.
    Afzal MR; Byun HY; Oh MK; Yoon J
    J Neuroeng Rehabil; 2015 Mar; 12():27. PubMed ID: 25889581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action.
    Davarpanah Jazi S; Hosang S; Heath M
    Neuropsychologia; 2015 May; 71():91-100. PubMed ID: 25796409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal Sounds Stiffer than Drums for Ears, but Not Always for Hands: Low-Level Auditory Features Affect Multisensory Stiffness Perception More than High-Level Categorical Information.
    Liu J; Ando H
    PLoS One; 2016; 11(11):e0167023. PubMed ID: 27902718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of a pneumatic surgical robot with haptic feedback function on surgical manipulation.
    Ueda Y; Miyahara S; Tokuishi K; Nakajima H; Waseda R; Shiraishi T; Sato T
    Sci Rep; 2023 Dec; 13(1):22615. PubMed ID: 38114613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks.
    Schiefer MA; Graczyk EL; Sidik SM; Tan DW; Tyler DJ
    PLoS One; 2018; 13(12):e0207659. PubMed ID: 30517154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 2.5D haptic feedback on virtual object perception via a stylus.
    Kim G; Hwang D; Park J
    Sci Rep; 2021 Sep; 11(1):18954. PubMed ID: 34556780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Training haptic stiffness discrimination: time course of learning with or without visual information and knowledge of results.
    Teodorescu K; Bouchigny S; Korman M
    Hum Factors; 2013 Aug; 55(4):830-40. PubMed ID: 23964421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Variability in Stiffness on Perception and Grip Force Adjustment.
    Kossowsky H; Farajian M; Milstein A; Nisky I
    IEEE Trans Haptics; 2021; 14(3):513-525. PubMed ID: 33449879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.