BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35271875)

  • 1. A behavioral paradigm for cortical control of a robotic actuator by freely moving rats in a one-dimensional two-target reaching task.
    Zaidi SMT; Kocatürk S; Baykaş T; Kocatürk M
    J Neurosci Methods; 2022 May; 373():109555. PubMed ID: 35271875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
    Derosier K; Veuthey TL; Ganguly K
    J Neurosci; 2021 Dec; 41(49):10120-10129. PubMed ID: 34732522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct neural representations during a brain-machine interface and manual reaching task in motor cortex, prefrontal cortex, and striatum.
    Zippi EL; Shvartsman GF; Vendrell-Llopis N; Wallis JD; Carmena JM
    Sci Rep; 2023 Oct; 13(1):17810. PubMed ID: 37857827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operant conditioning reveals task-specific responses of single neurons in a brain-machine interface.
    Garcia-Garcia MG; Marquez-Chin C; Popovic MR
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721847
    [No Abstract]   [Full Text] [Related]  

  • 6. Cortico-cerebellar coordination facilitates neuroprosthetic control.
    Abbasi A; Rangwani R; Bowen DW; Fealy AW; Danielsen NP; Gulati T
    Sci Adv; 2024 Apr; 10(15):eadm8246. PubMed ID: 38608024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W; Rousche PJ
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1171-94. PubMed ID: 9084589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
    So K; Ganguly K; Jimenez J; Gastpar MC; Carmena JM
    J Comput Neurosci; 2012 Jun; 32(3):555-61. PubMed ID: 22042443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.
    Flint RD; Scheid MR; Wright ZA; Solla SA; Slutzky MW
    J Neurosci; 2016 Mar; 36(12):3623-32. PubMed ID: 27013690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated behavioral apparatus to combine parameterized reaching and grasping movements in 3D space.
    Chen J; Hao Y; Zhang S; Sun G; Xu K; Chen W; Zheng X
    J Neurosci Methods; 2019 Jan; 312():139-147. PubMed ID: 30502371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.
    LaFleur K; Cassady K; Doud A; Shades K; Rogin E; He B
    J Neural Eng; 2013 Aug; 10(4):046003. PubMed ID: 23735712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Motor Skill Learning Processes with a Robotic Manipulandum.
    Leemburg S; Iijima M; Lambercy O; Nallet-Khosrofian L; Gassert R; Luft A
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills.
    Koralek AC; Jin X; Long JD; Costa RM; Carmena JM
    Nature; 2012 Mar; 483(7389):331-5. PubMed ID: 22388818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1195-212. PubMed ID: 9084590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.
    Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN
    PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 20. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Neuron; 2017 Jul; 95(1):195-208.e9. PubMed ID: 28625485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.