BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35271911)

  • 1. Normalizing tumor microenvironment with nanomedicine and metronomic therapy to improve immunotherapy.
    Mpekris F; Voutouri C; Panagi M; Baish JW; Jain RK; Stylianopoulos T
    J Control Release; 2022 May; 345():190-199. PubMed ID: 35271911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity.
    Panagi M; Voutouri C; Mpekris F; Papageorgis P; Martin MR; Martin JD; Demetriou P; Pierides C; Polydorou C; Stylianou A; Louca M; Koumas L; Costeas P; Kataoka K; Cabral H; Stylianopoulos T
    Theranostics; 2020; 10(4):1910-1922. PubMed ID: 32042344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy.
    Chen Q; Xu L; Chen J; Yang Z; Liang C; Yang Y; Liu Z
    Biomaterials; 2017 Dec; 148():69-80. PubMed ID: 28968536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metronomic chemotherapy and immunotherapy in cancer treatment.
    Chen YL; Chang MC; Cheng WF
    Cancer Lett; 2017 Aug; 400():282-292. PubMed ID: 28189534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of vascular normalization in benefit from metronomic chemotherapy.
    Mpekris F; Baish JW; Stylianopoulos T; Jain RK
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1994-1999. PubMed ID: 28174262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metronomic chemotherapy and nanocarrier platforms.
    Abu Lila AS; Ishida T
    Cancer Lett; 2017 Aug; 400():232-242. PubMed ID: 27838415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose metronomic gemcitabine pretreatments overcome the resistance of breast cancer to immune checkpoint therapy.
    Zheng X; Kuai J; Shen G
    Immunotherapy; 2023 Apr; 15(6):429-442. PubMed ID: 36880262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational nanomedicine potentiates immunotherapy in sarcoma by normalizing the microenvironment.
    Mpekris F; Panagi M; Michael C; Voutouri C; Tsuchiya M; Wagatsuma C; Kinoh H; Osada A; Akinaga S; Yoshida S; Martin JD; Stylianopoulos T
    J Control Release; 2023 Jan; 353():956-964. PubMed ID: 36516902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease.
    Kerbel RS; Shaked Y
    Cancer Lett; 2017 Aug; 400():293-304. PubMed ID: 28202353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance.
    Kareva I; Waxman DJ; Lakka Klement G
    Cancer Lett; 2015 Mar; 358(2):100-106. PubMed ID: 25541061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy.
    Peng S; Xiao F; Chen M; Gao H
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103836. PubMed ID: 34796689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel.
    Luan X; Guan YY; Lovell JF; Zhao M; Lu Q; Liu YR; Liu HJ; Gao YG; Dong X; Yang SC; Zheng L; Sun P; Fang C; Chen HZ
    Biomaterials; 2016 Jul; 95():60-73. PubMed ID: 27130953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling tumor microenvironment with nanomedicines.
    Martin JD; Miyazaki T; Cabral H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1730. PubMed ID: 34124849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound stiffness and perfusion markers correlate with tumor volume responses to immunotherapy.
    Voutouri C; Mpekris F; Panagi M; Krolak C; Michael C; Martin JD; Averkiou MA; Stylianopoulos T
    Acta Biomater; 2023 Sep; 167():121-134. PubMed ID: 37321529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC.
    Yang Y; Zhao T; Chen Q; Li Y; Xiao Z; Xiang Y; Wang B; Qiu Y; Tu S; Jiang Y; Nan Y; Huang Q; Ai K
    Adv Sci (Weinh); 2022 Oct; 9(28):e2202797. PubMed ID: 35869032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model to study low-dose metronomic scheduling for chemotherapy.
    Arora G; Bairagi N; Chatterjee S
    Math Biosci; 2024 Jun; 372():109186. PubMed ID: 38580078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.
    Zhang B; Shi W; Jiang T; Wang L; Mei H; Lu H; Hu Y; Pang Z
    Oncotarget; 2016 Sep; 7(38):62607-62618. PubMed ID: 27566585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.