BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35272041)

  • 1. Levels and effects of antidepressant drugs to aquatic organisms.
    Moreira DG; Aires A; de Lourdes Pereira M; Oliveira M
    Comp Biochem Physiol C Toxicol Pharmacol; 2022 Jun; 256():109322. PubMed ID: 35272041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms - Current state of knowledge.
    Świacka K; Maculewicz J; Kowalska D; Caban M; Smolarz K; Świeżak J
    J Hazard Mater; 2022 Feb; 424(Pt A):127350. PubMed ID: 34607031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review.
    Chen L; Guo C; Sun Z; Xu J
    Environ Res; 2021 Sep; 200():111362. PubMed ID: 34048744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the antidepressant sertraline show chronic effects on aquatic invertebrates at environmentally relevant concentrations? A case study with the keystone amphipod, Gammarus locusta.
    Neuparth T; Lopes AI; Alves N; Oliveira JMA; Santos MM
    Ecotoxicol Environ Saf; 2019 Nov; 183():109486. PubMed ID: 31377518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective.
    Kock A; Glanville HC; Law AC; Stanton T; Carter LJ; Taylor JC
    Sci Total Environ; 2023 Jun; 878():162939. PubMed ID: 36934940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of antidepressants in the reproduction of aquatic organisms: a meta-analysis.
    Lopes DG; Duarte IA; Antunes M; Fonseca VF
    Aquat Toxicol; 2020 Oct; 227():105569. PubMed ID: 32916319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review.
    Sehonova P; Svobodova Z; Dolezelova P; Vosmerova P; Faggio C
    Sci Total Environ; 2018 Aug; 631-632():789-794. PubMed ID: 29727988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-generational impacts of exposure to antidepressant fluoxetine on behaviour, reproduction, and morphology of freshwater snail Physa acuta.
    Henry J; Brand JA; Bai Y; Martin JM; Wong BBM; Wlodkowic D
    Sci Total Environ; 2022 Mar; 814():152731. PubMed ID: 34974022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicology of human pharmaceuticals.
    Fent K; Weston AA; Caminada D
    Aquat Toxicol; 2006 Feb; 76(2):122-59. PubMed ID: 16257063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms.
    Mezzelani M; Gorbi S; Regoli F
    Mar Environ Res; 2018 Sep; 140():41-60. PubMed ID: 29859717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior.
    Słoczyńska K; Orzeł J; Murzyn A; Popiół J; Gunia-Krzyżak A; Koczurkiewicz-Adamczyk P; Pękala E
    Aquat Toxicol; 2023 Jul; 260():106554. PubMed ID: 37167880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Biological Effects of Pharmaceuticals in the Marine Environment.
    Mezzelani M; Regoli F
    Ann Rev Mar Sci; 2022 Jan; 14():105-128. PubMed ID: 34425054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on the occurrence and biological effects of illicit drugs in aquatic ecosystems.
    Fontes MK; Maranho LA; Pereira CDS
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):30998-31034. PubMed ID: 32361972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selected widely prescribed pharmaceuticals: toxicity of the drugs and the products of their photochemical degradation to aquatic organisms.
    Klementova S; Poncarova M
    J Appl Biomed; 2024 Mar; 22(1):1-11. PubMed ID: 38505965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland).
    Giebułtowicz J; Nałęcz-Jawecki G
    Ecotoxicol Environ Saf; 2014 Jun; 104():103-9. PubMed ID: 24636953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms.
    Gómez-Regalado MDC; Martín-Pozo L; Martín J; Santos JL; Aparicio I; Alonso E; Zafra-Gómez A
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment.
    Zenker A; Cicero MR; Prestinaci F; Bottoni P; Carere M
    J Environ Manage; 2014 Jan; 133():378-87. PubMed ID: 24419205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the pharmaceuticals-nano/microplastics in aquatic systems by analytical and instrumental methods.
    Pashaei R; Dzingelevičienė R; Abbasi S; Szultka-Młyńska M; Buszewski B
    Environ Monit Assess; 2022 Jan; 194(2):93. PubMed ID: 35028740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms.
    Wilkinson JL; Hooda PS; Swinden J; Barker J; Barton S
    Environ Pollut; 2018 Mar; 234():864-875. PubMed ID: 29248854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.