These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3527257)

  • 1. Dissociation of the lactose repressor-operator DNA complex: effects of size and sequence context of operator-containing DNA.
    Whitson PA; Matthews KS
    Biochemistry; 1986 Jul; 25(13):3845-52. PubMed ID: 3527257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of the lactose repressor-operator DNA interaction.
    Whitson PA; Olson JS; Matthews KS
    Biochemistry; 1986 Jul; 25(13):3852-8. PubMed ID: 3527258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
    Winter RB; Berg OG; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of supercoiling and sequence context on operator DNA binding with lac repressor.
    Whitson PA; Hsieh WT; Wells RD; Matthews KS
    J Biol Chem; 1987 Oct; 262(30):14592-9. PubMed ID: 3667592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lac repressor-operator interaction: DNA length dependence.
    Khoury AM; Lee HJ; Lillis M; Lu P
    Biochim Biophys Acta; 1990 Sep; 1087(1):55-60. PubMed ID: 2205296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercoiling facilitates lac operator-repressor-pseudooperator interactions.
    Whitson PA; Hsieh WT; Wells RD; Matthews KS
    J Biol Chem; 1987 Apr; 262(11):4943-6. PubMed ID: 3549713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies on Cro repressor-operator DNA interaction.
    Kim JG; Takeda Y; Matthews BW; Anderson WF
    J Mol Biol; 1987 Jul; 196(1):149-58. PubMed ID: 2958636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA binding characteristics of lactose repressor and the trypsin-resistant core repressor.
    O'Gorman RB; Dunaway M; Matthews KS
    J Biol Chem; 1980 Nov; 255(21):10100-6. PubMed ID: 7000770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of inducer binding to lac repressor.operator complex.
    Dunaway M; Olson JS; Rosenberg JM; Kallai OB; Dickerson RE; Matthews KS
    J Biol Chem; 1980 Nov; 255(21):10115-9. PubMed ID: 7000772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sequence and distance between two operators on interaction with the lac repressor.
    Hsieh WT; Whitson PA; Matthews KS; Wells RD
    J Biol Chem; 1987 Oct; 262(30):14583-91. PubMed ID: 3667591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism in the reaction of gene regulatory proteins with DNA.
    Fried MG; Crothers DM
    J Mol Biol; 1984 Jan; 172(3):263-82. PubMed ID: 6319716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of trp repressor-operator interaction by filter binding.
    Klig LS; Crawford IP; Yanofsky C
    Nucleic Acids Res; 1987 Jul; 15(13):5339-51. PubMed ID: 3299270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the tight-binding I12-X86 lac repressor with non operator DNA: salt dependence of complex formation.
    Grebert P; Maurizot JC
    Nucleic Acids Res; 1986 Aug; 14(16):6613-20. PubMed ID: 3529038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences.
    Jeeves M; Evans PD; Parslow RA; Jaseja M; Hyde EI
    Eur J Biochem; 1999 Nov; 265(3):919-28. PubMed ID: 10518785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of repressor-operator recognition: the Tn10-encoded tetracycline resistance control.
    Kleinschmidt C; Tovar K; Hillen W; Porschke D
    Biochemistry; 1988 Feb; 27(4):1094-104. PubMed ID: 2835082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size.
    Liu YC; Matthews KS
    J Biol Chem; 1993 Nov; 268(31):23239-49. PubMed ID: 8226846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt dependence of the kinetics of the lac repressor-operator interaction: role of nonoperator deoxyribonucleic acid in the association reaction.
    Barkley MD
    Biochemistry; 1981 Jun; 20(13):3833-42. PubMed ID: 7023537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters.
    Daly TJ; Olson JS; Matthews KS
    Biochemistry; 1986 Sep; 25(19):5468-74. PubMed ID: 3535878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P nuclear magnetic resonance spectra and dissociation constants of lac repressor headpiece.duplex operator complexes: the importance of phosphate backbone flexibility in protein.DNA recognition.
    Botuyan MV; Keire DA; Kroen C; Gorenstein DG
    Biochemistry; 1993 Jul; 32(27):6863-74. PubMed ID: 8334119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.