These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 35272594)
1. Identification and Verification of Potential Core Genes in Pediatric Septic Shock. Xu Z; Jiang M; Bai X; Ding L; Dong P; Jiang M Comb Chem High Throughput Screen; 2022; 25(13):2228-2239. PubMed ID: 35272594 [TBL] [Abstract][Full Text] [Related]
2. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Kong C; Zhu Y; Xie X; Wu J; Qian M Front Immunol; 2023; 14():1184700. PubMed ID: 37359526 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Hu Y; Cheng L; Zhong W; Chen M; Zhang Q Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatic analysis identifies potential biomarkers and therapeutic targets of septic-shock-associated acute kidney injury. Tang Y; Yang X; Shu H; Yu Y; Pan S; Xu J; Shang Y Hereditas; 2021 Apr; 158(1):13. PubMed ID: 33863396 [TBL] [Abstract][Full Text] [Related]
5. [Bioinformatics analysis and key gene verification of sepsis myocardial macrophage microarray data based on GEO database]. Hu DX; Chen SS; Yu Y; Hu LL; Liu L; Yu LL Zhonghua Xin Xue Guan Bing Za Zhi; 2023 Jul; 51(7):759-768. PubMed ID: 37460430 [No Abstract] [Full Text] [Related]
6. Critical roles of S100A12, MMP9, and PRTN3 in sepsis diagnosis: Insights from multiple microarray data analyses. Zhang W Comput Biol Med; 2024 Mar; 171():108222. PubMed ID: 38447501 [TBL] [Abstract][Full Text] [Related]
7. Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients. Yang S; Cao C; Xie Z; Zhou Z Ann Transl Med; 2020 Mar; 8(6):295. PubMed ID: 32355739 [TBL] [Abstract][Full Text] [Related]
8. Study on potential differentially expressed genes in stroke by bioinformatics analysis. Yang X; Wang P; Yan S; Wang G Neurol Sci; 2022 Feb; 43(2):1155-1166. PubMed ID: 34313877 [TBL] [Abstract][Full Text] [Related]
9. Identification of key genes and pathways using bioinformatics analysis in septic shock children. Yang J; Zhang S; Zhang J; Dong J; Wu J; Zhang L; Guo P; Tang S; Zhao Z; Wang H; Zhao Y; Zhang W; Wu F Infect Drug Resist; 2018; 11():1163-1174. PubMed ID: 30147344 [TBL] [Abstract][Full Text] [Related]
10. Analysis of signature genes and association with immune cells infiltration in pediatric septic shock. Fan J; Shi S; Qiu Y; Liu M; Shu Q Front Immunol; 2022; 13():1056750. PubMed ID: 36439140 [TBL] [Abstract][Full Text] [Related]
11. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Bai J; Pu X; Zhang Y; Dai E Ren Fail; 2022 Dec; 44(1):966-986. PubMed ID: 35713363 [TBL] [Abstract][Full Text] [Related]
12. Screening of potential biomarkers for distinguishing between latent and active tuberculosis in children using bioinformatics analysis. Shao M; Wu F; Zhang J; Dong J; Zhang H; Liu X; Liang S; Wu J; Zhang L; Zhang C; Zhang W Medicine (Baltimore); 2021 Feb; 100(5):e23207. PubMed ID: 33592820 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis. Zhai J; Qi A; Zhang Y; Jiao L; Liu Y; Shou S Med Sci Monit; 2020 Apr; 26():e920818. PubMed ID: 32280132 [TBL] [Abstract][Full Text] [Related]
14. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
15. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gastric cancer. Wu Q; Zhang B; Wang Z; Hu X; Sun Y; Xu R; Chen X; Wang Q; Ju F; Ren S; Zhang C; Qi F; Ma Q; Xue Q; Zhou YL Pathol Res Pract; 2019 May; 215(5):1038-1048. PubMed ID: 30975489 [TBL] [Abstract][Full Text] [Related]
16. Long Noncoding RNA THAP9-AS1 and TSPOAP1-AS1 Provide Potential Diagnostic Signatures for Pediatric Septic Shock. Wu Y; Yin Q; Zhang X; Zhu P; Luan H; Chen Y Biomed Res Int; 2020; 2020():7170464. PubMed ID: 33344646 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatics analysis of differentially expressed genes involved in human developmental chondrogenesis. Zhou J; Li C; Yu A; Jie S; Du X; Liu T; Wang W; Luo Y Medicine (Baltimore); 2019 Jul; 98(27):e16240. PubMed ID: 31277141 [TBL] [Abstract][Full Text] [Related]
18. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Li Z; Wang C; Zhang X; Xu X; Wang M; Dong L Front Cell Infect Microbiol; 2023; 13():1235269. PubMed ID: 38029239 [TBL] [Abstract][Full Text] [Related]
19. [Bioinformatics analysis of ventilator-induced lung injury genome microarray based on gene expression omnibus database and key gene verification]. Chen S; Zhang Y; Zhan Q Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Jan; 34(1):41-47. PubMed ID: 35307059 [TBL] [Abstract][Full Text] [Related]
20. Identification of hub biomarkers and immune-related pathways participating in the progression of Kawasaki disease by integrated bioinformatics analysis. Gao Y; Tang X; Qian G; Huang H; Wang N; Wang Y; Zhuo W; Jiang J; Zheng Y; Li W; Liu Z; Li X; Xu L; Zhang J; Huang L; Liu Y; Lv H Immunobiology; 2023 Nov; 228(6):152750. PubMed ID: 37837870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]