These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35272891)

  • 1. Quantitative Analysis of Acoustic Pressure for Sonophoresis and Its Effect on Transdermal Penetration.
    Kurashina Y; Asano R; Matsui M; Nomoto T; Ando K; Nakamura K; Nishiyama N; Kitamoto Y
    Ultrasound Med Biol; 2022 May; 48(5):933-944. PubMed ID: 35272891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in transdermal sonophoresis.
    Ita K
    Pharm Dev Technol; 2017 Jun; 22(4):458-466. PubMed ID: 26608060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery.
    Park D; Won J; Lee G; Lee Y; Kim CW; Seo J
    Skin Res Technol; 2022 Mar; 28(2):291-298. PubMed ID: 35034386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained acoustic medicine; sonophoresis for nonsteroidal anti-inflammatory drug delivery in arthritis.
    Masterson J; Kluge B; Burdette A; Sr GL
    Ther Deliv; 2020 Jun; 11(6):363-372. PubMed ID: 32657251
    [No Abstract]   [Full Text] [Related]  

  • 5. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.
    Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y
    Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in ultrasound-based transdermal drug delivery.
    Seah BC; Teo BM
    Int J Nanomedicine; 2018; 13():7749-7763. PubMed ID: 30538456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis.
    Park J; Lee H; Lim GS; Kim N; Kim D; Kim YC
    AAPS PharmSciTech; 2019 Jan; 20(3):96. PubMed ID: 30694397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size.
    Lee KL; Zhou Y
    J Ultrasound Med; 2015 Mar; 34(3):519-26. PubMed ID: 25715372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.
    Park D; Song G; Jo Y; Won J; Son T; Cha O; Kim J; Jung B; Park H; Kim CW; Seo J
    PLoS One; 2016; 11(6):e0157707. PubMed ID: 27322539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound mediated transdermal drug delivery.
    Azagury A; Khoury L; Enden G; Kost J
    Adv Drug Deliv Rev; 2014 Jun; 72():127-43. PubMed ID: 24463344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transdermal drug delivery using ultrasound-theory, understanding and critical analysis.
    Sivakumar M; Tachibana K; Pandit AB; Yasui K; Tuziuti T; Towata A; Iida Y
    Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51 Suppl():OL767-84. PubMed ID: 16171576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of low-frequency ultrasound sonophoresis in skin penetration of histamine: a randomized study in humans.
    Maruani A; Vierron E; Machet L; Giraudeau B; Boucaud A
    Int J Pharm; 2010 Jan; 385(1-2):37-41. PubMed ID: 19837146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis.
    Rich KT; Hoerig CL; Rao MB; Mast TD
    J Control Release; 2014 Nov; 194():266-77. PubMed ID: 25135791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The progress of research on low-frequency sonophoresis and its applications].
    Tu X; Yin Q; Zhang W; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1474-8. PubMed ID: 19166235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study.
    Park D; Ryu H; Kim HS; Kim YS; Choi KS; Park H; Seo J
    Ultrasound Med Biol; 2012 Apr; 38(4):642-50. PubMed ID: 22341597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Sonophoresis as a Skin Penetration Technique in the Treatment of Rheumatoid Arthritis with Transdermal Patch.
    Vaidya J; Shende P
    AAPS PharmSciTech; 2020 Jun; 21(5):180. PubMed ID: 32601758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis - Insight into the observed synergism.
    Polat BE; Deen WM; Langer R; Blankschtein D
    J Control Release; 2012 Mar; 158(2):250-60. PubMed ID: 22100440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity.
    Terahara T; Mitragotri S; Kost J; Langer R
    Int J Pharm; 2002 Mar; 235(1-2):35-42. PubMed ID: 11879737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.
    Tezel A; Mitragotri S
    Biophys J; 2003 Dec; 85(6):3502-12. PubMed ID: 14645045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.