These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35273192)

  • 21. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.
    Evans RJ; Rustad JR; Casey WH
    J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.
    Chang SW
    Restor Dent Endod; 2012 Nov; 37(4):188-93. PubMed ID: 23429542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive Hydration Model of Portland Cement and Its Main Minerals Based on Dissolution Theory and Water Diffusion Theory.
    Qi T; Zhou W; Liu X; Wang Q; Zhang S
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab Initio Modeling of Transition Metal Dissolution from the LiNi
    Intan NN; Klyukin K; Alexandrov V
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20110-20116. PubMed ID: 31081328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydration structure and water exchange kinetics at xenotime-water interfaces: implications for rare earth minerals separation.
    Roy S; Wu L; Goverapet Srinivasan S; Stack AG; Navrotsky A; Bryantsev VS
    Phys Chem Chem Phys; 2020 Apr; 22(15):7719-7727. PubMed ID: 32215419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicate glass and mineral dissolution: calculated reaction paths and activation energies for hydrolysis of a q3 si by H3O+ using ab initio methods.
    Criscenti LJ; Kubicki JD; Brantley SL
    J Phys Chem A; 2006 Jan; 110(1):198-206. PubMed ID: 16392856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ab initio Kinetic Monte Carlo simulations of dissolution at the NaCl-water interface.
    Chen JC; Reischl B; Spijker P; Holmberg N; Laasonen K; Foster AS
    Phys Chem Chem Phys; 2014 Nov; 16(41):22545-54. PubMed ID: 25227553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.
    Yamamoto S; Han L; Noiri Y; Okiji T
    Int Endod J; 2017 Dec; 50 Suppl 2():e73-e82. PubMed ID: 27977862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiscale understanding of tricalcium silicate hydration reactions.
    Cuesta A; Zea-Garcia JD; Londono-Zuluaga D; De la Torre AG; Santacruz I; Vallcorba O; Dapiaggi M; Sanfélix SG; Aranda MAG
    Sci Rep; 2018 Jun; 8(1):8544. PubMed ID: 29867195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. H2CO3 forms via HCO3- in water.
    Stirling A; Pápai I
    J Phys Chem B; 2010 Dec; 114(50):16854-9. PubMed ID: 21114307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acid Neutralization Capacity of a Tricalcium Silicate-Containing Calcium Phosphate Cement as an Endodontic Material.
    Cherng AM; Takagi S; Chow LC
    J Res Natl Inst Stand Technol; 2010; 115(6):471-6. PubMed ID: 27134799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HCO3(-) formation from CO2 at high pH: ab initio molecular dynamics study.
    Stirling A
    J Phys Chem B; 2011 Dec; 115(49):14683-7. PubMed ID: 22053783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Predota M; Bandura A; Kubicki JD; Lvov SN; Cummings PT; Chialvo AA; Ridley MK; Bénézeth P; Anovitz L; Palmer DA; Machesky ML; Wesolowski DJ
    Langmuir; 2004 Jun; 20(12):4954-69. PubMed ID: 15984256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration.
    Bae S; Kanematsu M; Hernández-Cruz D; Moon J; Kilcoyne D; Monteiro PJM
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the water-bioglass interface by ab initio molecular dynamics simulations.
    Tilocca A; Cormack AN
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1324-33. PubMed ID: 20355929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and adsorption properties of alpha-tricalcium phosphate.
    Yin X; Stott MJ
    J Chem Phys; 2006 Mar; 124(12):124701. PubMed ID: 16599712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements.
    Rajasekharan S; Vercruysse C; Martens L; Verbeeck R
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals.
    Wang Y; Jove-Colon CF; Kuhlman KL
    Sci Rep; 2016 Jul; 6():30256. PubMed ID: 27443508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acidic and alkaline chemicals' influence on a tricalcium silicate-based dental biomaterial.
    Neelakantan P; Berger T; Primus C; Shemesh H; Wesselink PR
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):377-387. PubMed ID: 29656513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.