These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 35273237)
1. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Singh P; Kumar K; Jha AK; Yadava P; Pal M; Rakshit S; Singh I Sci Rep; 2022 Mar; 12(1):4211. PubMed ID: 35273237 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
3. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
4. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640 [TBL] [Abstract][Full Text] [Related]
5. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. Gelli M; Duo Y; Konda AR; Zhang C; Holding D; Dweikat I BMC Genomics; 2014 Mar; 15():179. PubMed ID: 24597475 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Qian Y; Ren Q; Zhang J; Chen L Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
11. Maize Genotypes Sensitive and Tolerant to Low Phosphorus Levels Exhibit Different Transcriptome Profiles under Sun Q; Zhang P; Zhao Z; Sun X; Liu X; Zhang H; Jiang W Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569319 [No Abstract] [Full Text] [Related]
12. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Tiwari JK; Buckseth T; Zinta R; Saraswati A; Singh RK; Rawat S; Dua VK; Chakrabarti SK Sci Rep; 2020 Jan; 10(1):1152. PubMed ID: 31980689 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Chen Q; Liu Z; Wang B; Wang X; Lai J; Tian F Plant Cell Rep; 2015 Oct; 34(10):1761-71. PubMed ID: 26116219 [TBL] [Abstract][Full Text] [Related]
14. Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture. Subudhi PK; Garcia RS; Coronejo S; Tapia R Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796695 [TBL] [Abstract][Full Text] [Related]
15. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Schlüter U; Mascher M; Colmsee C; Scholz U; Bräutigam A; Fahnenstich H; Sonnewald U Plant Physiol; 2012 Nov; 160(3):1384-406. PubMed ID: 22972706 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J; Yan B; Lou X; Ma H; Ruan S BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503 [TBL] [Abstract][Full Text] [Related]
17. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit. Mia MS; Liu H; Wang X; Zhang C; Yan G Sci Rep; 2020 Mar; 10(1):4854. PubMed ID: 32184417 [TBL] [Abstract][Full Text] [Related]
18. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea). Joshi V; Joshi M; Penalosa A PLoS One; 2020; 15(5):e0232011. PubMed ID: 32374731 [TBL] [Abstract][Full Text] [Related]
20. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize. Liu Y; Zhou M; Gao Z; Ren W; Yang F; He H; Zhao J PLoS One; 2015; 10(11):e0143128. PubMed ID: 26599013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]