These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 35273312)
1. Effects of void nodes on epidemic spreads in networks. Kuga K; Tanimoto J Sci Rep; 2022 Mar; 12(1):3957. PubMed ID: 35273312 [TBL] [Abstract][Full Text] [Related]
2. A stochastic SIR network epidemic model with preventive dropping of edges. Ball F; Britton T; Leung KY; Sirl D J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213 [TBL] [Abstract][Full Text] [Related]
3. Generalised probability mass function for the final epidemic size of an SIR model on a line of triangles network. McCulloch K; Roberts MG; Laing CR Math Biosci; 2019 May; 311():49-61. PubMed ID: 30844380 [TBL] [Abstract][Full Text] [Related]
4. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes. Yang H; Tang M; Gross T Sci Rep; 2015 Aug; 5():13122. PubMed ID: 26293740 [TBL] [Abstract][Full Text] [Related]
5. Exact and approximate moment closures for non-Markovian network epidemics. Pellis L; House T; Keeling MJ J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999 [TBL] [Abstract][Full Text] [Related]
6. Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated. Cator E; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052802. PubMed ID: 25353839 [TBL] [Abstract][Full Text] [Related]
7. The large graph limit of a stochastic epidemic model on a dynamic multilayer network. Jacobsen KA; Burch MG; Tien JH; Rempała GA J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687 [TBL] [Abstract][Full Text] [Related]
8. Susceptible-infected-recovered epidemics in random networks with population awareness. Wu Q; Chen S Chaos; 2017 Oct; 27(10):103107. PubMed ID: 29092430 [TBL] [Abstract][Full Text] [Related]
9. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
10. Temporal percolation of the susceptible network in an epidemic spreading. Valdez LD; Macri PA; Braunstein LA PLoS One; 2012; 7(9):e44188. PubMed ID: 23028498 [TBL] [Abstract][Full Text] [Related]
11. Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings. Van Mieghem P; Liu Q Phys Rev E; 2019 Aug; 100(2-1):022317. PubMed ID: 31574702 [TBL] [Abstract][Full Text] [Related]
12. Comment on "Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated". Rodríguez PM; Roldán-Correa A; Valencia LA Phys Rev E; 2018 Aug; 98(2-2):026301. PubMed ID: 30253510 [TBL] [Abstract][Full Text] [Related]
13. Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations. Li C; van de Bovenkamp R; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026116. PubMed ID: 23005834 [TBL] [Abstract][Full Text] [Related]
14. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models. Wilkinson RR; Ball FG; Sharkey KJ J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223 [TBL] [Abstract][Full Text] [Related]
15. SIR dynamics in random networks with communities. Li J; Wang J; Jin Z J Math Biol; 2018 Oct; 77(4):1117-1151. PubMed ID: 29752517 [TBL] [Abstract][Full Text] [Related]
16. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Van Mieghem P; van de Bovenkamp R Phys Rev Lett; 2013 Mar; 110(10):108701. PubMed ID: 23521310 [TBL] [Abstract][Full Text] [Related]
17. Resilience of epidemics for SIS model on networks. Lu D; Yang S; Zhang J; Wang H; Li D Chaos; 2017 Aug; 27(8):083105. PubMed ID: 28863477 [TBL] [Abstract][Full Text] [Related]
18. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks. Liu Q; Van Mieghem P Phys Rev E; 2018 Feb; 97(2-1):022309. PubMed ID: 29548175 [TBL] [Abstract][Full Text] [Related]
19. Epidemic thresholds in dynamic contact networks. Volz E; Meyers LA J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429 [TBL] [Abstract][Full Text] [Related]
20. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography. Ballard PG; Bean NG; Ross JV J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]