These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35273357)

  • 1. Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells.
    Hong W; Yang J; Zou J; Bi Z; He C; Lei H; He X; Li X; Alu A; Ren W; Wang Z; Jiang X; Zhong K; Jia G; Yang Y; Yu W; Huang Q; Yang M; Zhou Y; Zhao Y; Kuang D; Wang J; Wang H; Chen S; Luo M; Zhang Z; Lu T; Chen L; Que H; He Z; Sun Q; Wang W; Shen G; Lu G; Zhao Z; Yang L; Yang J; Wang Z; Li J; Song X; Dai L; Chen C; Geng J; Gou M; Chen L; Dong H; Peng Y; Huang C; Qian Z; Cheng W; Fan C; Wei Y; Su Z; Tong A; Lu S; Peng X; Wei X
    Cell Mol Immunol; 2022 May; 19(5):577-587. PubMed ID: 35273357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural basis of accelerated host cell entry by SARS-CoV-2†.
    Seyran M; Takayama K; Uversky VN; Lundstrom K; Palù G; Sherchan SP; Attrish D; Rezaei N; Aljabali AAA; Ghosh S; Pizzol D; Chauhan G; Adadi P; Mohamed Abd El-Aziz T; Soares AG; Kandimalla R; Tambuwala M; Hassan SS; Azad GK; Pal Choudhury P; Baetas-da-Cruz W; Serrano-Aroca Á; Brufsky AM; Uhal BD
    FEBS J; 2021 Sep; 288(17):5010-5020. PubMed ID: 33264497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.
    Kim CH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target.
    Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S
    Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.
    Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T
    mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner.
    Lavie M; Dubuisson J; Belouzard S
    J Virol; 2022 Jul; 96(13):e0047422. PubMed ID: 35678602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity.
    Pal D
    J Struct Biol; 2021 Jun; 213(2):107713. PubMed ID: 33662570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico exploration of enzymes involved in sialic acid biosynthesis and their possible role in SARS-CoV-2 infection.
    Divya VC; Saravanakarthikeyan B
    J Oral Biosci; 2021 Dec; 63(4):416-419. PubMed ID: 34506921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SARS-CoV-2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View.
    Unione L; Moure MJ; Lenza MP; Oyenarte I; Ereño-Orbea J; Ardá A; Jiménez-Barbero J
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201432. PubMed ID: 35191576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry.
    Zeng XT; Yu XX; Cheng W
    Virol J; 2021 Dec; 18(1):257. PubMed ID: 34961524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
    Essalmani R; Jain J; Susan-Resiga D; Andréo U; Evagelidis A; Derbali RM; Huynh DN; Dallaire F; Laporte M; Delpal A; Sutto-Ortiz P; Coutard B; Mapa C; Wilcoxen K; Decroly E; Nq Pham T; Cohen ÉA; Seidah NG
    J Virol; 2022 Apr; 96(8):e0012822. PubMed ID: 35343766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells.
    Wang K; Chen W; Zhang Z; Deng Y; Lian JQ; Du P; Wei D; Zhang Y; Sun XX; Gong L; Yang X; He L; Zhang L; Yang Z; Geng JJ; Chen R; Zhang H; Wang B; Zhu YM; Nan G; Jiang JL; Li L; Wu J; Lin P; Huang W; Xie L; Zheng ZH; Zhang K; Miao JL; Cui HY; Huang M; Zhang J; Fu L; Yang XM; Zhao Z; Sun S; Gu H; Wang Z; Wang CF; Lu Y; Liu YY; Wang QY; Bian H; Zhu P; Chen ZN
    Signal Transduct Target Ther; 2020 Dec; 5(1):283. PubMed ID: 33277466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-acylation of SARS-CoV-2 spike protein: Mechanistic dissection, in vitro reconstitution and role in viral infectivity.
    Puthenveetil R; Lun CM; Murphy RE; Healy LB; Vilmen G; Christenson ET; Freed EO; Banerjee A
    J Biol Chem; 2021 Oct; 297(4):101112. PubMed ID: 34428449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered 5-helix bundle derived from SARS-CoV-2 S2 pre-binds sarbecoviral spike at both serological- and endosomal-pH to inhibit virus entry.
    Lin X; Guo L; Lin S; Chen Z; Yang F; Yang J; Wang L; Wen A; Duan Y; Zhang X; Dai Y; Yin K; Yuan X; Yu C; He B; Cao Y; Dong H; Li J; Zhao Q; Lu G
    Emerg Microbes Infect; 2022 Dec; 11(1):1920-1935. PubMed ID: 35757908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Recombinant Fragment of Human Surfactant Protein D Binds Spike Protein and Inhibits Infectivity and Replication of SARS-CoV-2 in Clinical Samples.
    Madan T; Biswas B; Varghese PM; Subedi R; Pandit H; Idicula-Thomas S; Kundu I; Rooge S; Agarwal R; Tripathi DM; Kaur S; Gupta E; Gupta SK; Kishore U
    Am J Respir Cell Mol Biol; 2021 Jul; 65(1):41-53. PubMed ID: 33784482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity.
    Haddad M; Gaudreault R; Sasseville G; Nguyen PT; Wiebe H; Van De Ven T; Bourgault S; Mousseau N; Ramassamy C
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2.
    Zhao X; Zheng S; Chen D; Zheng M; Li X; Li G; Lin H; Chang J; Zeng H; Guo JT
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural and Recombinant SARS-CoV-2 Isolates Rapidly Evolve
    Shiliaev N; Lukash T; Palchevska O; Crossman DK; Green TJ; Crowley MR; Frolova EI; Frolov I
    J Virol; 2021 Oct; 95(21):e0135721. PubMed ID: 34406867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition of Furin Cleavage Site and Further SARS-CoV-2 Evolution Change the Mechanisms of Viral Entry, Infection Spread, and Cell Signaling.
    Frolova EI; Palchevska O; Lukash T; Dominguez F; Britt W; Frolov I
    J Virol; 2022 Aug; 96(15):e0075322. PubMed ID: 35876526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.