These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35273447)
1. Identification of Hub Genes Associated with COPD Through Integrated Bioinformatics Analysis. Chen L; Zhu D; Huang J; Zhang H; Zhou G; Zhong X Int J Chron Obstruct Pulmon Dis; 2022; 17():439-456. PubMed ID: 35273447 [TBL] [Abstract][Full Text] [Related]
2. PTPLAD2 and USP49 Involved in the Pathogenesis of Smoke-Induced COPD by Integrative Bioinformatics Analysis. Zhang Q; Song W; Ayidaerhan N; He Z Int J Chron Obstruct Pulmon Dis; 2020; 15():2515-2526. PubMed ID: 33116468 [TBL] [Abstract][Full Text] [Related]
3. Roundabout signaling pathway involved in the pathogenesis of COPD by integrative bioinformatics analysis. Lin YZ; Zhong XN; Chen X; Liang Y; Zhang H; Zhu DL Int J Chron Obstruct Pulmon Dis; 2019; 14():2145-2162. PubMed ID: 31571851 [TBL] [Abstract][Full Text] [Related]
4. Identification of related-genes of T cells in lung tissue of chronic obstructive pulmonary disease based on bioinformatics and experimental validation. Xue T; Dong F; Gao J; Zhong X Sci Rep; 2024 May; 14(1):12042. PubMed ID: 38802460 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomics Analysis Identifies the Presence of Upregulated Ribosomal Housekeeping Genes in the Alveolar Macrophages of Patients with Smoking-Induced Chronic Obstructive Pulmonary Disease. Han L; Wang J; Ji XB; Wang ZY; Wang Y; Zhang LY; Li HP; Zhang ZM; Li QY Int J Chron Obstruct Pulmon Dis; 2021; 16():2653-2664. PubMed ID: 34588774 [TBL] [Abstract][Full Text] [Related]
6. Extracellular vesicle dynamics in COPD: understanding the role of miR-422a, SPP1 and IL-17 A in smoking-related pathology. Dai Z; Lin L; Xu Y; Hu L; Gou S; Xu X BMC Pulm Med; 2024 Apr; 24(1):173. PubMed ID: 38609925 [TBL] [Abstract][Full Text] [Related]
7. Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis. Wu Y; Guan S; Ge Y; Yang Y; Cao Y; Zhou J Toxicol In Vitro; 2020 Jun; 65():104770. PubMed ID: 31935487 [TBL] [Abstract][Full Text] [Related]
8. Identification of hub genes and key pathways in the emphysema phenotype of COPD. Zuo Q; Wang Y; Yang D; Guo S; Li X; Dong J; Wan C; Shen Y; Wen F Aging (Albany NY); 2021 Feb; 13(4):5120-5135. PubMed ID: 33535173 [TBL] [Abstract][Full Text] [Related]
9. Genetic screening of MMP1 as a potential pathogenic gene in chronic obstructive pulmonary disease. Yi E; Cao W; Zhang J; Lin B; Wang Z; Wang X; Bai G; Mei X; Xie C; Jin J; Liu X; Li H; Wu F; Lin Z; Sun R; Li B; Zhou Y; Ran P Life Sci; 2023 Jan; 313():121214. PubMed ID: 36442527 [TBL] [Abstract][Full Text] [Related]
10. Construction of Potential miRNA-mRNA Regulatory Network in COPD Plasma by Bioinformatics Analysis. Zhu M; Ye M; Wang J; Ye L; Jin M Int J Chron Obstruct Pulmon Dis; 2020; 15():2135-2145. PubMed ID: 32982206 [TBL] [Abstract][Full Text] [Related]
11. Identification of Small Airway Epithelium-Related Hub Genes in Chronic Obstructive Pulmonary Disease. Lin L; Lin G; Chen X; Lin H; Lin Q; Zeng Y; Xu Y Int J Chron Obstruct Pulmon Dis; 2022; 17():3001-3015. PubMed ID: 36475041 [TBL] [Abstract][Full Text] [Related]
12. Identification of six candidate genes for endometrial carcinoma by bioinformatics analysis. Zhu Y; Shi L; Chen P; Zhang Y; Zhu T World J Surg Oncol; 2020 Jul; 18(1):161. PubMed ID: 32641130 [TBL] [Abstract][Full Text] [Related]
13. Integrated analysis reveals lung fibrinogen gamma chain as a biomarker for chronic obstructive pulmonary disease. Zhang H; Li C; Song X; Cheng L; Liu Q; Zhang N; Wei L; Chung K; Adcock IM; Ling C; Li F Ann Transl Med; 2021 Dec; 9(24):1765. PubMed ID: 35071459 [TBL] [Abstract][Full Text] [Related]
14. [Bioinformatics analysis of severe emphysema genome microarray based on GEO database]. Qin JY; Jia HZ; Zhang Y; Li DD; Shen YC; Chen L; Wen FQ Zhonghua Yi Xue Za Zhi; 2020 Jan; 100(2):104-109. PubMed ID: 31937048 [No Abstract] [Full Text] [Related]
15. RNA Sequencing and Related Differential Gene Expression Analysis in a Mouse Model of Emphysema Induced by Tobacco Smoke Combined with Elastin Peptides. Feng X; Deng J; Li X; Zhang H; Wei X; Ma T; Tang S; Zhang J Int J Chron Obstruct Pulmon Dis; 2023; 18():2147-2161. PubMed ID: 37810372 [TBL] [Abstract][Full Text] [Related]
16. Overexpression Of hsa-miR-664a-3p Is Associated With Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease Via Targeting FHL1. Zhong S; Chen C; Liu N; Yang L; Hu Z; Duan P; Shuai D; Zhang Q; Wang Y Int J Chron Obstruct Pulmon Dis; 2019; 14():2319-2329. PubMed ID: 31632001 [TBL] [Abstract][Full Text] [Related]
17. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. Zhang DW; Ye JJ; Sun Y; Ji S; Kang JY; Wei YY; Fei GH J Inflamm Res; 2022; 15():2491-2507. PubMed ID: 35479834 [TBL] [Abstract][Full Text] [Related]
18. Seven ferroptosis-specific expressed genes are considered as potential biomarkers for the diagnosis and treatment of cigarette smoke-induced chronic obstructive pulmonary disease. Lin Z; Xu Y; Guan L; Qin L; Ding J; Zhang Q; Zhou L Ann Transl Med; 2022 Mar; 10(6):331. PubMed ID: 35433978 [TBL] [Abstract][Full Text] [Related]
19. Markers of anti-oxidant response in tobacco smoke exposed subjects: a data-mining review. Comandini A; Marzano V; Curradi G; Federici G; Urbani A; Saltini C Pulm Pharmacol Ther; 2010 Dec; 23(6):482-92. PubMed ID: 20594977 [TBL] [Abstract][Full Text] [Related]
20. Identification of genes and key pathways underlying the pathophysiological association between sarcopenia and chronic obstructive pulmonary disease. Wang W; Ren W; Zhu L; Hu Y; Ye C Exp Gerontol; 2024 Mar; 187():112373. PubMed ID: 38320732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]