These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35274299)

  • 1. Genome-Scale Metabolic Model's multi-objective solving algorithm based on the inflexion point of Pareto front including maximum energy utilization and its application in Aspergillus niger DS03043.
    Fan X; Zhou J; Xia J; Yan X
    Biotechnol Bioeng; 2022 Jun; 119(6):1539-1555. PubMed ID: 35274299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions.
    Zhou J; Zhuang Y; Xia J
    Microb Cell Fact; 2021 Jun; 20(1):125. PubMed ID: 34193117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs.
    Lu H; Cao W; Ouyang L; Xia J; Huang M; Chu J; Zhuang Y; Zhang S; Noorman H
    Biotechnol Bioeng; 2017 Mar; 114(3):685-695. PubMed ID: 27696371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated isotope-assisted metabolomics and (13)C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger.
    Lu H; Liu X; Huang M; Xia J; Chu J; Zhuang Y; Zhang S; Noorman H
    Microb Cell Fact; 2015 Sep; 14():147. PubMed ID: 26383080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective optimization in Aspergillus niger fermentation for selective product enhancement.
    Mandal C; Gudi RD; Suraishkumar GK
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):149-64. PubMed ID: 16217656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis and adaptive mutation strategy differential evolution algorithm for optimizing enzymes' turnover numbers in metabolic models.
    Fan X; Cao L; Yan X
    Biotechnol Bioeng; 2023 Aug; 120(8):2301-2313. PubMed ID: 37448239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger.
    Sui YF; Schütze T; Ouyang LM; Lu H; Liu P; Xiao X; Qi J; Zhuang YP; Meyer V
    Microb Cell Fact; 2020 Oct; 19(1):198. PubMed ID: 33097040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-dominated sorting Differential Search Algorithm Flux Balance Analysis (ndsDSAFBA) for in silico multiobjective optimization in identifying reactions knockout.
    Daud KM; Mohamad MS; Zakaria Z; Hassan R; Shah ZA; Deris S; Ibrahim Z; Napis S; Sinnott RO
    Comput Biol Med; 2019 Oct; 113():103390. PubMed ID: 31450056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on hot rolling scheduling problem based on Two-phase Pareto algorithm.
    Chen W; Xiufeng Z; Guohua Z
    PLoS One; 2020; 15(12):e0241077. PubMed ID: 33370776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks.
    Nagrath D; Avila-Elchiver M; Berthiaume F; Tilles AW; Messac A; Yarmush ML
    Ann Biomed Eng; 2007 Jun; 35(6):863-85. PubMed ID: 17393337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition.
    Lu H; Cao W; Liu X; Sui Y; Ouyang L; Xia J; Huang M; Zhuang Y; Zhang S; Noorman H; Chu J
    Sci Rep; 2018 Sep; 8(1):14404. PubMed ID: 30258063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling.
    Liu L; Bockmayr A
    J Theor Biol; 2020 Sep; 501():110317. PubMed ID: 32446743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved differential evolution algorithm for multi-modal multi-objective optimization.
    Qu D; Xiao H; Chen H; Li H
    PeerJ Comput Sci; 2024; 10():e1839. PubMed ID: 38660209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Meta-Objective Approach for Many-Objective Evolutionary Optimization.
    Gong D; Liu Y; Yen GG
    Evol Comput; 2020; 28(1):1-25. PubMed ID: 30475673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving Many-Objective Optimization Problems by a Pareto-Based Evolutionary Algorithm With Preprocessing and a Penalty Mechanism.
    Liu Y; Zhu N; Li M
    IEEE Trans Cybern; 2021 Nov; 51(11):5585-5594. PubMed ID: 32452796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.
    Pardo-Montero J; Fenwick JD
    Med Phys; 2010 Jun; 37(6):2606-16. PubMed ID: 20632572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
    D'Huys PJ; Lule I; Vercammen D; Anné J; Van Impe JF; Bernaerts K
    J Biotechnol; 2012 Sep; 161(1):1-13. PubMed ID: 22641041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.
    Hu XB; Wang M; Di Paolo E
    IEEE Trans Cybern; 2013 Jun; 43(3):1088-101. PubMed ID: 23193246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.