These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35274347)

  • 1. A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma.
    Abdallah IA; Hammad SF; Bedair A; Abdelaziz MA; Danielson ND; Elshafeey AH; Mansour FR
    Biomed Chromatogr; 2022 Jun; 36(6):e5365. PubMed ID: 35274347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma.
    Abdallah IA; Hammad SF; Bedair A; Mansour FR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1189():123087. PubMed ID: 34974319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV.
    Abdallah IA; Hammad SF; Bedair A; Elshafeey AH; Mansour FR
    Bioanalysis; 2022 Feb; 14(4):205-216. PubMed ID: 35001648
    [No Abstract]   [Full Text] [Related]  

  • 4. A gadolinium-based magnetic ionic liquid for dispersive liquid-liquid microextraction.
    Abdelaziz MA; Mansour FR; Danielson ND
    Anal Bioanal Chem; 2021 Jan; 413(1):205-214. PubMed ID: 33095289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection.
    Merib J; Spudeit DA; Corazza G; Carasek E; Anderson JL
    Anal Bioanal Chem; 2018 Jul; 410(19):4689-4699. PubMed ID: 29313077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ derivatization combined with magnetic ionic liquid-based fast dispersive liquid-liquid microextraction for determination of biogenic amines in food samples.
    Cao D; Xu X; Xue S; Feng X; Zhang L
    Talanta; 2019 Jul; 199():212-219. PubMed ID: 30952249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effervescence tablets based on magnetic ionic liquids as simple microdevices for the in situ dispersive liquid-liquid microextraction of urinary biomarkers.
    González-Martín R; Trujillo-Rodríguez MJ; Freire MG; Ayala JH; Pino V
    Anal Chim Acta; 2024 Nov; 1328():343187. PubMed ID: 39266200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of [P
    Doğan B; Altunay N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Dec; 40(12):1600-1613. PubMed ID: 37910078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic ionic liquid-based dispersive liquid-liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography.
    Wang Y; Sun Y; Xu B; Li X; Jin R; Zhang H; Song D
    J Chromatogr A; 2014 Dec; 1373():9-16. PubMed ID: 25464995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic liquid-based dispersive liquid-liquid microextraction followed by RP-HPLC determination of saquinavir in rat serum: application to pharmacokinetics.
    Ramisetti NR; Nimmu NV; Challa GN
    Biomed Chromatogr; 2014 Dec; 28(12):1874-80. PubMed ID: 24944096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid-Liquid Microextraction of Ivermectin from Environmental Water.
    Abdelaziz MA; Saleh AM; Mansour FR; Danielson ND
    J Chromatogr Sci; 2023 Dec; 61(10):988-994. PubMed ID: 36533420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid-liquid microextraction.
    Bowers AN; Trujillo-Rodríguez MJ; Farooq MQ; Anderson JL
    Anal Bioanal Chem; 2019 Nov; 411(28):7375-7385. PubMed ID: 31655857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-magnetic center ionic liquids for dispersive liquid-liquid microextraction coupled with in-situ decomposition based back-extraction for the enrichment of parabens in beverage samples.
    Qiao L; Tao Y; Qin H; Niu R
    J Chromatogr A; 2023 Jan; 1689():463771. PubMed ID: 36610188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Non-Instrumental Green Analytical Method Based on Surfactant-Assisted Dispersive Liquid-Liquid Microextraction-Thin-Layer Chromatography-Smartphone-Based Digital Image Colorimetry(SA-DLLME-TLC-SDIC) for Determining Favipiravir in Biological Samples.
    Jain B; Jain R; Jaiswal PK; Zughaibi T; Sharma T; Kabir A; Singh R; Sharma S
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex-Assisted Dispersive Liquid-Liquid Microextraction Coupled with Deproteinization for Determination of Nateglinide in Human Plasma Using HPLC/UV.
    Hammad MA; Kamal AH; Kannouma RE; Mansour FR
    J Chromatogr Sci; 2021 Feb; 59(3):297-304. PubMed ID: 33275653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new magnetic ionic liquid based salting-out assisted dispersive liquid-liquid microextraction for the determination of parabens in environmental water samples.
    Tao Y; Jia L; Qin H; Niu R; Qiao L
    Anal Methods; 2022 Dec; 14(46):4775-4783. PubMed ID: 36374117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents.
    Yu H; Merib J; Anderson JL
    J Chromatogr A; 2016 Sep; 1463():11-9. PubMed ID: 27515554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive determination of trace urinary 3-hydroxybenzo[a]pyrene using ionic liquids-based dispersive liquid-liquid microextraction followed by chemical derivatization and high performance liquid chromatography-high resolution tandem mass spectrometry.
    Hu H; Liu B; Yang J; Lin Z; Gan W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():200-6. PubMed ID: 27294533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography.
    Fan C; Li N; Cao X
    Food Chem; 2015 May; 174():446-51. PubMed ID: 25529704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.