BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3527445)

  • 1. Characterization of natural killer cells and their precursors in the murine bone marrow.
    Silvennoinen O; Renkonen R; Hurme M
    Cell Immunol; 1986 Aug; 101(1):1-7. PubMed ID: 3527445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and differentiation of natural killer cells. I. Characteristics of a transplantable NK cell precursor.
    Hackett J; Bennett M; Kumar V
    J Immunol; 1985 Jun; 134(6):3731-8. PubMed ID: 3989295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphokine-activated killer cells in rats: generation of natural killer cells and lymphokine-activated killer cells from bone marrow progenitor cells.
    Sarneva M; Vujanovic NL; Van den Brink MR; Herberman RB; Hiserodt JC
    Cell Immunol; 1989 Feb; 118(2):448-57. PubMed ID: 2910504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of natural killer cell lines from murine long-term bone marrow cultures.
    Yung YP; Okumura K; Moore MA
    J Immunol; 1985 Mar; 134(3):1462-8. PubMed ID: 3968424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in number and density of large granular lymphocytes upon in vivo augmentation of mouse natural killer activity.
    Santoni A; Piccoli M; Ortaldo JR; Mason L; Wiltrout RH; Herberman RB
    J Immunol; 1985 Apr; 134(4):2799-810. PubMed ID: 2579157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cytotoxic cells generated from in vitro cultures of murine bone marrow cells.
    Klimpel GR; Sarzotti M; Reyes VE; Klimpel KD
    Cell Immunol; 1985 Apr; 92(1):1-13. PubMed ID: 2416478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of pluripotent hematopoietic stem cells of bone marrow by large granular lymphocytes.
    Barlozzari T; Herberman RB; Reynolds CW
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7691-5. PubMed ID: 3478719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous development of cells with large granular lymphocyte (LGL) morphology and natural killer (NK) cell lytic activity after bone marrow (BM) transplantation in mice.
    Silvennoinen O; Hurme M
    Immunology; 1988 Jan; 63(1):105-10. PubMed ID: 3276616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver.
    Wiltrout RH; Mathieson BJ; Talmadge JE; Reynolds CW; Zhang SR; Herberman RB; Ortaldo JR
    J Exp Med; 1984 Nov; 160(5):1431-49. PubMed ID: 6491601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High expression of the Thy-1 antigen on natural killer cells recently derived from bone marrow.
    Hurme M; Sihvola M
    Cell Immunol; 1984 Apr; 84(2):276-84. PubMed ID: 6142769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric analysis reveals the presence of asialo GM1 on the surface membrane of alloimmune cytotoxic T lymphocytes.
    Suttles J; Schwarting GA; Stout RD
    J Immunol; 1986 Mar; 136(5):1586-91. PubMed ID: 2936802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphokine-activated killer cells in mouse bone marrow chimaeras. The relationship to natural killer cells and to alloreactive cytotoxic T cells.
    Sihvola M
    Scand J Immunol; 1985 Nov; 22(5):479-88. PubMed ID: 2867599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of large granular T lymphocytes in vivo during viral infection.
    Biron CA; Natuk RJ; Welsh RM
    J Immunol; 1986 Mar; 136(6):2280-6. PubMed ID: 3485144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estrogen and antiestrogen modulation of the levels of mouse natural killer activity and large granular lymphocytes.
    Screpanti I; Santoni A; Gulino A; Herberman RB; Frati L
    Cell Immunol; 1987 May; 106(2):191-202. PubMed ID: 2882860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of natural killer (NK) cells from NK precursor cells in rat long-term bone marrow cultures.
    van den Brink MR; Boggs SS; Herberman RB; Hiserodt JC
    J Exp Med; 1990 Jul; 172(1):303-13. PubMed ID: 2358779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vivo role of murine natural killer cells in the development of B cell lineage in bone marrow.
    Tamauchi H; Shimamura K; Okumura K; Habu S; Tamaoki N
    Tokai J Exp Clin Med; 1985 Dec; 10(6):621-9. PubMed ID: 3915838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations.
    Ballas ZK; Rasmussen W; van Otegham JK
    J Immunol; 1987 Mar; 138(5):1647-52. PubMed ID: 2879870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells.
    Kalland T; Belfrage H; Bhiladvala P; Hedlund G
    J Immunol; 1987 Jun; 138(11):3640-5. PubMed ID: 3495566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells.
    Yang JC; Mulé JJ; Rosenberg SA
    J Immunol; 1986 Jul; 137(2):715-22. PubMed ID: 2873187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of functional subpopulations of murine natural killer cells based on their cell surface asialo GM1 phenotype.
    Tang J; DeLong DC; Marder P; Butler LD; Ades EW
    Cell Immunol; 1985 Dec; 96(2):386-97. PubMed ID: 3915718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.