These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effect of Mg Ma Y; Shuai K; Zhou L; Wang J; Wang Q Dalton Trans; 2020 Nov; 49(43):15397-15403. PubMed ID: 33140799 [TBL] [Abstract][Full Text] [Related]
7. Metal-Organic Framework Template Synthesis of NiCo Yuan D; Huang G; Yin D; Wang X; Wang C; Wang L ACS Appl Mater Interfaces; 2017 May; 9(21):18178-18186. PubMed ID: 28488853 [TBL] [Abstract][Full Text] [Related]
8. Multi-core yolk-shell-structured Bi Zhu Y; Zhao J; Li L; Xu J; Zhao X; Mi Y; Jin J Dalton Trans; 2021 Aug; 50(31):10758-10764. PubMed ID: 34313287 [TBL] [Abstract][Full Text] [Related]
9. Anionic Se-Substitution toward High-Performance CuS Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703 [TBL] [Abstract][Full Text] [Related]
10. Bimetallic NiCo Zhang Y; Zhang Y; Zhang Y; Si H; Sun L Nanomicro Lett; 2019 Apr; 11(1):35. PubMed ID: 34137965 [TBL] [Abstract][Full Text] [Related]
11. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Wang YX; Yang J; Chou SL; Liu HK; Zhang WX; Zhao D; Dou SX Nat Commun; 2015 Oct; 6():8689. PubMed ID: 26507613 [TBL] [Abstract][Full Text] [Related]
12. Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. Wu M; Zhang Y; Li T; Chen Z; Cao SA; Xu F Nanoscale; 2018 Jul; 10(26):12526-12534. PubMed ID: 29931024 [TBL] [Abstract][Full Text] [Related]
13. Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries. Wang Z; Rafai S; Qiao C; Jia J; Zhu Y; Ma X; Cao C ACS Appl Mater Interfaces; 2019 Feb; 11(7):7046-7054. PubMed ID: 30667214 [TBL] [Abstract][Full Text] [Related]
14. Crystal engineering of bimetallic cobalt-based metal-organic framework nanosheets for high-performance aqueous rechargeable cobalt-zinc batteries. Wang H; Bai J; He Q; Liao Y; Wang S; Chen L J Colloid Interface Sci; 2024 Jul; 665():172-180. PubMed ID: 38522157 [TBL] [Abstract][Full Text] [Related]
15. Facile Preparation of CuCo Zhang Q; Hu Y; Wang J; Dai Y; Pan F Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077 [TBL] [Abstract][Full Text] [Related]
16. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries. Han X; Wu F; Zhao R; Bai Y; Wu C ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545 [TBL] [Abstract][Full Text] [Related]
17. A Yolk-Shell-Structured FePO Zhang Z; Du Y; Wang QC; Xu J; Zhou YN; Bao J; Shen J; Zhou X Angew Chem Int Ed Engl; 2020 Sep; 59(40):17504-17510. PubMed ID: 32602633 [TBL] [Abstract][Full Text] [Related]
18. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries. Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193 [TBL] [Abstract][Full Text] [Related]
19. A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium-Ion Storage. Shen Y; Zhang Q; Wang Y; Gu L; Zhao X; Shen X Adv Mater; 2021 Oct; 33(41):e2103881. PubMed ID: 34436798 [TBL] [Abstract][Full Text] [Related]
20. 3D Tunnel Copper Tetrathiovanadate Nanocube Cathode Achieving Ultrafast Magnesium Storage Reactions through a Charge Delocalization and Displacement Mechanism. Tao D; Ran L; Li T; Cao Y; Xu F ACS Nano; 2024 Oct; 18(42):28810-28821. PubMed ID: 39377230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]