These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35274672)

  • 41. Identifying B-cell epitopes using AlphaFold2 predicted structures and pretrained language model.
    Zeng Y; Wei Z; Yuan Q; Chen S; Yu W; Lu Y; Gao J; Yang Y
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37039829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data.
    Ditz JC; Reuter B; Pfeifer N
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i76-i85. PubMed ID: 37387152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction.
    He H; Chen G; Yu-Chian Chen C
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GraphDTA: predicting drug-target binding affinity with graph neural networks.
    Nguyen T; Le H; Quinn TP; Nguyen T; Le TD; Venkatesh S
    Bioinformatics; 2021 May; 37(8):1140-1147. PubMed ID: 33119053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrating heterogeneous knowledge graphs into drug-drug interaction extraction from the literature.
    Asada M; Miwa M; Sasaki Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36416141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning.
    Zhuo L; Song B; Liu Y; Li Z; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction.
    He H; Chen G; Chen CY
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37252835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-aware protein self-supervised learning.
    Chen CS; Zhou J; Wang F; Liu X; Dou D
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37052532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D graph neural network with few-shot learning for predicting drug-drug interactions in scaffold-based cold start scenario.
    Lv Q; Zhou J; Yang Z; He H; Chen CY
    Neural Netw; 2023 Aug; 165():94-105. PubMed ID: 37276813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AFTGAN: prediction of multi-type PPI based on attention free transformer and graph attention network.
    Kang Y; Elofsson A; Jiang Y; Huang W; Yu M; Li Z
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692145
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Deep Neural Network-Based Co-Coding Method to Predict Drug-Protein Interactions by Analyzing the Feature Consistency Between Drugs and Proteins.
    Sun C; Tang R; Huang J; Wei JM; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2200-2209. PubMed ID: 37021862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction.
    Wang K; Zhou R; Tang J; Li M
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37225408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A convolutional neural network and graph convolutional network-based method for predicting the classification of anatomical therapeutic chemicals.
    Zhao H; Li Y; Wang J
    Bioinformatics; 2021 Sep; 37(18):2841-2847. PubMed ID: 33769479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CPGL: Prediction of Compound-Protein Interaction by Integrating Graph Attention Network With Long Short-Term Memory Neural Network.
    Zhao M; Yuan M; Yang Y; Xu SX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1935-1942. PubMed ID: 36445995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism.
    Lin S; Wang Y; Zhang L; Chu Y; Liu Y; Fang Y; Jiang M; Wang Q; Zhao B; Xiong Y; Wei DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34671814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Convolutional neural networks with image representation of amino acid sequences for protein function prediction.
    Sara ST; Hasan MM; Ahmad A; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107494. PubMed ID: 33930742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.