These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35274732)

  • 1. The regulatory role of CARBON STARVED ANTHER-mediated photoperiod-dependent male fertility in rice.
    Li J; Wang D; Sun S; Sun L; Zong J; Lei Y; Yu J; Liang W; Zhang D
    Plant Physiol; 2022 Jun; 189(2):955-971. PubMed ID: 35274732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning.
    Wang D; Li J; Sun L; Hu Y; Yu J; Wang C; Zhang F; Hou H; Liang W; Zhang D
    New Phytol; 2021 Aug; 231(4):1612-1629. PubMed ID: 34031889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jasmonic Acid Plays a Pivotal Role in Pollen Development and Fertility Regulation in Different Types of P(T)GMS Rice Lines.
    He Y; Liu C; Zhu L; Fu M; Sun Y; Zeng H
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production.
    Zhang H; Xu C; He Y; Zong J; Yang X; Si H; Sun Z; Hu J; Liang W; Zhang D
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):76-81. PubMed ID: 23256151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Photoperiod-Sensitive Genic Male Sterile Rice Lines with CRISPR/Cas9.
    Gu W; Zhang D; Qi Y; Yuan Z
    Methods Mol Biol; 2019; 1917():97-107. PubMed ID: 30610631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development.
    Zhang H; Liang W; Yang X; Luo X; Jiang N; Ma H; Zhang D
    Plant Cell; 2010 Mar; 22(3):672-89. PubMed ID: 20305120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day.
    Wang W; Liu Z; Guo Z; Song G; Cheng Q; Jiang D; Zhu Y; Yang D
    BMC Genomics; 2011 Sep; 12():462. PubMed ID: 21943343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice.
    Sun Y; Xiong X; Wang Q; Zhu L; Wang L; He Y; Zeng H
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation changes in photoperiod-thermo-sensitive male sterile rice PA64S under two different conditions.
    Chen X; Hu J; Zhang H; Ding Y
    Gene; 2014 Mar; 537(1):143-8. PubMed ID: 24365594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis.
    Zhou L; Mao YC; Yang YM; Wang JJ; Zhong X; Han Y; Zhang YF; Shi QS; Huang XH; Meyers BC; Zhu J; Yang ZN
    Plant Biotechnol J; 2024 Jul; 22(7):2020-2032. PubMed ID: 38421616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line.
    Zhang M; Liu J; Ma Q; Qin Y; Wang H; Chen P; Ma L; Fu X; Zhu L; Wei H; Yu S
    BMC Genomics; 2020 Nov; 21(1):825. PubMed ID: 33228563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis Reveals Photoperiod-Associated Genes Expressed in Rice Anthers.
    Sun S; Wang D; Li J; Lei Y; Li G; Cai W; Zhao X; Liang W; Zhang D
    Front Plant Sci; 2021; 12():621561. PubMed ID: 33719293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice.
    Fan Y; Zhang Q
    Plant Reprod; 2018 Mar; 31(1):3-14. PubMed ID: 29094211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytological observation of two environmental genic male-sterile lines of rice.
    Ku SJ; Cho KH; Choi YJ; Baek WK; Kim S; Suh HS; Chung YY
    Mol Cells; 2001 Dec; 12(3):403-6. PubMed ID: 11804342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development.
    Li J; Kim YJ; Zhang D
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid metabolism is involved in male fertility regulation of the photoperiod- and thermo sensitive genic male sterile rice line Peiai 64S.
    Zhu L; Chen Z; Li H; Sun Y; Wang L; Zeng H; He Y
    Plant Sci; 2020 Oct; 299():110581. PubMed ID: 32900435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice.
    Bai B; Zhao J; Li Y; Zhang F; Zhou J; Chen F; Xie X
    Plant Sci; 2016 Jun; 247():25-34. PubMed ID: 27095397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.).
    Peng HF; Zhang ZF; Wu B; Chen XH; Zhang GQ; Zhang ZM; Wan BH; Lu YP
    Theor Appl Genet; 2008 Dec; 118(1):77-83. PubMed ID: 18810384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA.
    Zhou H; Liu Q; Li J; Jiang D; Zhou L; Wu P; Lu S; Li F; Zhu L; Liu Z; Chen L; Liu YG; Zhuang C
    Cell Res; 2012 Apr; 22(4):649-60. PubMed ID: 22349461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice.
    Sun Y; Fu M; Ang Y; Zhu L; Wei L; He Y; Zeng H
    Front Plant Sci; 2022; 13():945105. PubMed ID: 35968120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.