These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35274785)

  • 1. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis.
    Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M
    Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft.
    Zou M; Xu L; Zhou J; Song J; Liu S; Li X
    Microsc Res Tech; 2020 Feb; 83(2):156-164. PubMed ID: 31659818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the structural features and geometric parameters affecting the axial mechanical properties of the primary feather rachis.
    Zhou J; Zou M; Xu S; Li X; Song J; Qi Y
    Microsc Res Tech; 2022 Mar; 85(3):861-874. PubMed ID: 34664756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seagull feather shaft: Correlation between structure and mechanical response.
    Wang B; Meyers MA
    Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and comparison of protein secondary structures in the rachis of avian flight feathers.
    Lin PY; Huang PY; Lee YC; Ng CS
    PeerJ; 2022; 10():e12919. PubMed ID: 35251779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired avian feather designs.
    Sullivan TN; Hung TT; Velasco-Hogan A; Meyers MA
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110066. PubMed ID: 31546447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical properties of bird feather rachises: exploring naturally occurring fibre reinforced laminar composites.
    Laurent CM; Palmer C; Boardman RP; Dyke G; Cook RB
    J R Soc Interface; 2014 Dec; 11(101):20140961. PubMed ID: 25339689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers.
    Lees J; Garner T; Cooper G; Nudds R
    R Soc Open Sci; 2017 Feb; 4(2):160927. PubMed ID: 28386445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear model fitting analysis of feather growth and development curves in the embryonic stages of Jilin white geese (Anser cygnoides).
    Wang Y; Fu X; Wang S; Mabrouk I; Zhou Y; Song Y; Liu T; Ma J; Zhuang F; Zhang X; Xu K; Sun Y
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36371804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.
    Liu ZQ; Jiao D; Meyers MA; Zhang ZF
    Acta Biomater; 2015 Apr; 17():137-51. PubMed ID: 25662166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of flight feathers under uniaxial compression.
    Schelestow K; Troncoso OP; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo Assembly and Comparative Transcriptome Profiling of
    Sello CT; Liu C; Sun Y; Msuthwana P; Hu J; Sui Y; Chen S; Zhou Y; Lu H; Xu C; Sun Y; Liu J; Li S; Yang W
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31072014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between goose circovirus and goose parvovirus with gosling feather loss disease and goose broke feather disease in southern Taiwan.
    Ting CH; Lin CY; Huang YC; Liu SS; Peng SY; Wang CW; Wu HY
    J Vet Sci; 2021 Jan; 22(1):e1. PubMed ID: 33522153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
    Alibardi L
    Anat Sci Int; 2010 Jun; 85(2):79-91. PubMed ID: 19714292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development rule of feathers and application of hair root tissue in sex identification of Yangzhou geese.
    Qi S; Xu X; Liu L; Wang G; Bao Q; Zhang Y; Zhang Y; Zhang Y; Xu Q; Zhao W; Chen G
    Poult Sci; 2024 Apr; 103(4):103529. PubMed ID: 38350388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The damping properties of the foam-filled shaft of primary feathers of the pigeon Columba livia.
    Deng K; Kovalev A; Rajabi H; Schaber CF; Dai ZD; Gorb SN
    Naturwissenschaften; 2021 Dec; 109(1):1. PubMed ID: 34860292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.