These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35274785)

  • 21. Modification of Keratin Integrations and the Associated Morphogenesis in Frizzling Chicken Feathers.
    Wu H; Chuang TC; Liao WC; Chi KJ; Ng CS; Cheng HC; Juan WT
    Biology (Basel); 2024 Jun; 13(7):. PubMed ID: 39056659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather.
    Liang Y; Liu C; Zhao Q; Lin Z; Han Z; Ren L
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal and diel activity patterns of the endangered taiga bean goose (Anser fabalis fabalis) during the breeding season, monitored with camera traps.
    Nykänen M; Pöysä H; Hakkarainen S; Rajala T; Matala J; Kunnasranta M
    PLoS One; 2021; 16(7):e0254254. PubMed ID: 34264981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome-level genome sequencing and multi-omics of the Hungarian White Goose (Anser anser domesticus) reveals novel miRNA-mRNA regulation mechanism of waterfowl feather follicle development.
    Zhou Y; Mabrouk I; Ma J; Liu Q; Song Y; Xue G; Li X; Wang S; Liu C; Hu J; Sun Y
    Poult Sci; 2024 Sep; 103(9):103933. PubMed ID: 38943801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic Composition and Mechanical Behavior of a Natural Thin-Walled Composite: Eagle Feather Shaft.
    Cai S; Han B; Xu Y; Guo E; Sun B; Zeng Y; Hou H; Wu S
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo strains in pigeon flight feather shafts: implications for structural design.
    Corning WR; Biewener AA
    J Exp Biol; 1998 Nov; 201 (Pt 22)():3057-65. PubMed ID: 9787125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds.
    Wang X; Nudds RL; Palmer C; Dyke GJ
    J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection of tawny owl (Strix aluco) flight feather shaft for biomonitoring As, Cd and Pb pollution.
    Seoane RG; Río ZV; Ocaña AC; Escribano JÁF; Viñas JRA
    Environ Sci Pollut Res Int; 2018 May; 25(14):14271-14276. PubMed ID: 29627961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia.
    Yue Z; Jiang TX; Widelitz RB; Chuong CM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):951-5. PubMed ID: 16418297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds.
    O'Connor JK; Chiappe LM; Chuong CM; Bottjer DJ; You H
    Geosciences (Basel); 2012 Sep; 2(3):157-177. PubMed ID: 24003379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The morphogenesis of feathers.
    Yu M; Wu P; Widelitz RB; Chuong CM
    Nature; 2002 Nov; 420(6913):308-12. PubMed ID: 12442169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. White Roman Goose Feather-Inspired Unidirectionally Inclined Conical Structure Arrays for Switchable Anisotropic Self-Cleaning.
    Chen YJ; Fang CY; Huang YW; Hsu TF; Tang NT; Tsai HP; Lee RH; Lin SH; Hsuen HW; Lin KA; Yang H
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36840-36850. PubMed ID: 38954505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructural tissue-engineering in the rachis and barbs of bird feathers.
    Lingham-Soliar T
    Sci Rep; 2017 Mar; 7():45162. PubMed ID: 28345593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of feather follicle development in embryonic geese.
    Xu RF; Wu W; Xu H
    Poult Sci; 2007 Sep; 86(9):2000-7. PubMed ID: 17704390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
    Lingham-Soliar T; Murugan N
    PLoS One; 2013; 8(6):e65849. PubMed ID: 23762440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flight feather moult drives minimum daily heart rate in wild geese.
    Portugal SJ; White CR; Green JA; Butler PJ
    Biol Lett; 2018 Nov; 14(11):. PubMed ID: 30487260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China.
    Zhang P; Zou Y; Xie Y; Zhang H; Liu X; Gao D; Yi F
    Sci Total Environ; 2018 Sep; 636():30-38. PubMed ID: 29702400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of an Alternative Feather Sampling Method to Measure Corticosterone.
    Voit M; Merle R; Baumgartner K; von Fersen L; Reese L; Ladwig-Wiegard M; Will H; Tallo-Parra O; Carbajal A; Lopez-Bejar M; Thöne-Reineke C
    Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33171996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences.
    Jovani R; Rohwer S
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1113-1127. PubMed ID: 27062218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.