BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35274933)

  • 1. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection.
    Li Y; Jarosova R; Weese-Myers ME; Ross AE
    Anal Chem; 2022 Mar; 94(11):4803-4812. PubMed ID: 35274933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide fiber microelectrodes with controlled sheet alignment for sensitive neurotransmitter detection.
    Jarosova R; Ostertag BJ; Ross AE
    Nanoscale; 2023 Sep; 15(37):15249-15258. PubMed ID: 37672207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry.
    Li Y; Ross AE
    Analyst; 2020 Feb; 145(3):805-815. PubMed ID: 31820742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection.
    Zestos AG; Venton BJ
    ECS Trans; 2017 Oct; 80(10):1497-1509. PubMed ID: 33859773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection.
    Mohanaraj S; Wonnenberg P; Cohen B; Zhao H; Hartings MR; Zou S; Fox DM; Zestos AG
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection.
    Chang Y; Venton BJ
    Anal Methods; 2020 Jun; 12(22):2893-2902. PubMed ID: 32617123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling.
    Harreither W; Trouillon R; Poulin P; Neri W; Ewing AG; Safina G
    Anal Chem; 2013 Aug; 85(15):7447-53. PubMed ID: 23789970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical treatment in KOH improves carbon nanomaterial performance to multiple neurochemicals.
    Hanser SM; Shao Z; Zhao H; Venton BJ
    Analyst; 2024 Jan; 149(2):457-466. PubMed ID: 38087947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the different effects of fouling mechanisms on working and reference electrodes in fast-scan cyclic voltammetry for neurotransmitter detection.
    Jang J; Cho HU; Hwang S; Kwak Y; Kwon H; Heien ML; Bennet KE; Oh Y; Shin H; Lee KH; Jang DP
    Analyst; 2024 May; 149(10):3008-3016. PubMed ID: 38606455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MPCVD-Grown Nanodiamond Microelectrodes with Oxygen Plasma Activation for Neurochemical Applications.
    Shao Z; Wilson L; Chang Y; Venton BJ
    ACS Sens; 2022 Oct; 7(10):3192-3200. PubMed ID: 36223478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes.
    Le Goff A; Reuillard B; Cosnier S
    Langmuir; 2013 Jul; 29(27):8736-42. PubMed ID: 23767958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.
    Jacobs CB; Ivanov IN; Nguyen MD; Zestos AG; Venton BJ
    Anal Chem; 2014 Jun; 86(12):5721-7. PubMed ID: 24832571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry.
    Koehne JE; Marsh M; Boakye A; Douglas B; Kim IY; Chang SY; Jang DP; Bennet KE; Kimble C; Andrews R; Meyyappan M; Lee KH
    Analyst; 2011 May; 136(9):1802-5. PubMed ID: 21387028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.