These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35274958)
1. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events. Sun L; Vandermause J; Batzner S; Xie Y; Clark D; Chen W; Kozinsky B J Chem Theory Comput; 2022 Apr; 18(4):2341-2353. PubMed ID: 35274958 [TBL] [Abstract][Full Text] [Related]
2. MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation. Chen H; Liu H; Feng H; Fu H; Cai W; Shao X; Chipot C J Chem Inf Model; 2022 Jan; 62(1):1-8. PubMed ID: 34939790 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables. Cendagorta JR; Tolpin J; Schneider E; Topper RQ; Tuckerman ME J Phys Chem B; 2020 May; 124(18):3647-3660. PubMed ID: 32275148 [TBL] [Abstract][Full Text] [Related]
4. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. Chen W; Ferguson AL J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Derived Collective Variables for the Study of Protein Homodimerization in Membrane. Majumder A; Straub JE J Chem Theory Comput; 2024 Jul; 20(13):5774-5783. PubMed ID: 38918177 [TBL] [Abstract][Full Text] [Related]
6. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling. Rydzewski J; Valsson O J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915 [TBL] [Abstract][Full Text] [Related]
7. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design. Chen W; Tan AR; Ferguson AL J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681 [TBL] [Abstract][Full Text] [Related]
8. Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning. Fu H; Bian H; Shao X; Cai W J Phys Chem Lett; 2024 Feb; 15(6):1774-1783. PubMed ID: 38329095 [TBL] [Abstract][Full Text] [Related]
9. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables. Hashemian B; Millán D; Arroyo M J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358 [TBL] [Abstract][Full Text] [Related]
10. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789 [TBL] [Abstract][Full Text] [Related]
11. DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space. Ketkaew R; Luber S J Chem Inf Model; 2022 Dec; 62(24):6352-6364. PubMed ID: 36445176 [TBL] [Abstract][Full Text] [Related]
12. On Sampling Minimum Energy Path. Ramil M; Boudier C; Goryaeva AM; Marinica MC; Maillet JB J Chem Theory Comput; 2022 Oct; 18(10):5864-5875. PubMed ID: 36073162 [TBL] [Abstract][Full Text] [Related]
13. LINES: Log-Probability Estimation via Invertible Neural Networks for Enhanced Sampling. Odstrcil RE; Dutta P; Liu J J Chem Theory Comput; 2022 Oct; 18(10):6297-6309. PubMed ID: 36099438 [TBL] [Abstract][Full Text] [Related]
14. Combining Transition Path Sampling with Data-Driven Collective Variables through a Reactivity-Biased Shooting Algorithm. Zhang J; Zhang O; Bonati L; Hou T J Chem Theory Comput; 2024 Jun; 20(11):4523-4532. PubMed ID: 38801759 [TBL] [Abstract][Full Text] [Related]
15. Reinforced dynamics for enhanced sampling in large atomic and molecular systems. Zhang L; Wang H; E W J Chem Phys; 2018 Mar; 148(12):124113. PubMed ID: 29604808 [TBL] [Abstract][Full Text] [Related]
16. Supervised learning and the finite-temperature string method for computing committor functions and reaction rates. Hasyim MR; Batton CH; Mandadapu KK J Chem Phys; 2022 Nov; 157(18):184111. PubMed ID: 36379761 [TBL] [Abstract][Full Text] [Related]
17. A Multitask Approach to Learn Molecular Properties. Tan Z; Li Y; Shi W; Yang S J Chem Inf Model; 2021 Aug; 61(8):3824-3834. PubMed ID: 34289687 [TBL] [Abstract][Full Text] [Related]
18. Chasing Collective Variables Using Autoencoders and Biased Trajectories. Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117 [TBL] [Abstract][Full Text] [Related]
19. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data. Ding DY; Simpson C; Pfohl S; Kale DC; Jung K; Shah NH Pac Symp Biocomput; 2019; 24():18-29. PubMed ID: 30864307 [TBL] [Abstract][Full Text] [Related]
20. Unfolding Hidden Barriers by Active Enhanced Sampling. Zhang J; Chen M Phys Rev Lett; 2018 Jul; 121(1):010601. PubMed ID: 30028174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]