These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35275176)

  • 1. Petal development and elaboration.
    Fu X; Shan H; Yao X; Cheng J; Jiang Y; Yin X; Kong H
    J Exp Bot; 2022 Jun; 73(11):3308-3318. PubMed ID: 35275176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The making of elaborate petals in Nigella through developmental repatterning.
    Yao X; Zhang W; Duan X; Yuan Y; Zhang R; Shan H; Kong H
    New Phytol; 2019 Jul; 223(1):385-396. PubMed ID: 30889278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the Key Regulatory Genes Involved in Elaborate Petal Development and Specialized Character Formation in
    Zhang R; Fu X; Zhao C; Cheng J; Liao H; Wang P; Yao X; Duan X; Yuan Y; Xu G; Kramer EM; Shan H; Kong H
    Plant Cell; 2020 Oct; 32(10):3095-3112. PubMed ID: 32732312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.
    Ojeda I; Francisco-Ortega J; Cronk QC
    Ann Bot; 2009 Nov; 104(6):1099-110. PubMed ID: 19789174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petal Development in Lotus japonicus.
    Weng L; Tian Z; Feng X; Li X; Xu S; Hu X; Luo D; Yang J
    J Integr Plant Biol; 2011 Oct; 53(10):770-82. PubMed ID: 21902804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae.
    Yang X; Zhao XG; Li CQ; Liu J; Qiu ZJ; Dong Y; Wang YZ
    Plant Physiol; 2015 Nov; 169(3):2138-51. PubMed ID: 26351309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential transcriptome analysis reveals insight into monosymmetric corolla development of the crucifer Iberis amara.
    Busch A; Horn S; Zachgo S
    BMC Plant Biol; 2014 Nov; 14():285. PubMed ID: 25407089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Half-Size ABC Transporter FOLDED PETALS 2/ABCG13 Is Involved in Petal Elongation through Narrow Spaces in Arabidopsis thaliana Floral Buds.
    Takeda S; Iwasaki A; Tatematsu K; Okada K
    Plants (Basel); 2014 Aug; 3(3):348-58. PubMed ID: 27135508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the nature of petals in Caryophyllaceae? Developmental evidence clarifies their evolutionary origin.
    Wei L; Craene LR
    Ann Bot; 2019 Sep; 124(2):281-295. PubMed ID: 31175350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elaborate petals in Australian Spermacoce (Rubiaceae) species: morphology, ontogeny and function.
    Vaes E; Vrijdaghs A; Smets EF; Dessein S
    Ann Bot; 2006 Dec; 98(6):1167-78. PubMed ID: 17028295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae).
    Ojeda DI; Jaén-Molina R; Santos-Guerra A; Caujape-Castells J; Cronk Q
    Plant Biol (Stuttg); 2017 May; 19(3):420-427. PubMed ID: 28135026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis Suggests Auxin Regulation in Dorsal-Ventral Petal Asymmetry of Wild Progenitor
    Pan ZJ; Nien YC; Shih YA; Chen TY; Lin WD; Kuo WH; Hsu HC; Tu SL; Chen JC; Wang CN
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral nectaries and pseudonectaries in Eranthis (Ranunculaceae): petal development, micromorphology, structure and ultrastructure.
    Huang Z; Zhang X
    Protoplasma; 2022 Sep; 259(5):1283-1300. PubMed ID: 35066725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis petal: a model for plant organogenesis.
    Irish VF
    Trends Plant Sci; 2008 Aug; 13(8):430-6. PubMed ID: 18603466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Petal senescence: a hormone view.
    Ma N; Ma C; Liu Y; Shahid MO; Wang C; Gao J
    J Exp Bot; 2018 Feb; 69(4):719-732. PubMed ID: 29425359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical interaction of floral organs controls petal morphogenesis in Arabidopsis.
    Takeda S; Iwasaki A; Matsumoto N; Uemura T; Tatematsu K; Okada K
    Plant Physiol; 2013 Mar; 161(3):1242-50. PubMed ID: 23314942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion.
    Zhong J; Powell S; Preston JC
    Plant Biol (Stuttg); 2016 Nov; 18(6):893-902. PubMed ID: 27500862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profiles of aquaporin homologues and petal movement during petal development in Tulipa gesneriana.
    Azad AK; Hanawa R; Ishikawa T; Sawa Y; Shibata H
    Physiol Plant; 2013 Jul; 148(3):397-407. PubMed ID: 23088645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.