These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35275252)
1. Genotype imputation for soybean nested association mapping population to improve precision of QTL detection. Chen L; Yang S; Araya S; Quigley C; Taliercio E; Mian R; Specht JE; Diers BW; Song Q Theor Appl Genet; 2022 May; 135(5):1797-1810. PubMed ID: 35275252 [TBL] [Abstract][Full Text] [Related]
2. Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Li S; Cao Y; He J; Zhao T; Gai J Theor Appl Genet; 2017 Nov; 130(11):2297-2314. PubMed ID: 28799029 [TBL] [Abstract][Full Text] [Related]
3. Genotyping by sequencing for genomic prediction in a soybean breeding population. Jarquín D; Kocak K; Posadas L; Hyma K; Jedlicka J; Graef G; Lorenz A BMC Genomics; 2014 Aug; 15(1):740. PubMed ID: 25174348 [TBL] [Abstract][Full Text] [Related]
4. The impact of reducing the frequency of animals genotyped at higher density on imputation and prediction accuracies using ssGBLUP1. Sollero BP; Howard JT; Spangler ML J Anim Sci; 2019 Jul; 97(7):2780-2792. PubMed ID: 31115442 [TBL] [Abstract][Full Text] [Related]
5. Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations. Pryce JE; Johnston J; Hayes BJ; Sahana G; Weigel KA; McParland S; Spurlock D; Krattenmacher N; Spelman RJ; Wall E; Calus MP J Dairy Sci; 2014 Mar; 97(3):1799-811. PubMed ID: 24472132 [TBL] [Abstract][Full Text] [Related]
6. Generating High Density, Low Cost Genotype Data in Soybean [ Happ MM; Wang H; Graef GL; Hyten DL G3 (Bethesda); 2019 Jul; 9(7):2153-2160. PubMed ID: 31072870 [TBL] [Abstract][Full Text] [Related]
7. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Khan MA; Tong F; Wang W; He J; Zhao T; Gai J Planta; 2018 Oct; 248(4):947-962. PubMed ID: 29980855 [TBL] [Abstract][Full Text] [Related]
8. High-density marker imputation accuracy in sixteen French cattle breeds. Hozé C; Fouilloux MN; Venot E; Guillaume F; Dassonneville R; Fritz S; Ducrocq V; Phocas F; Boichard D; Croiseau P Genet Sel Evol; 2013 Sep; 45(1):33. PubMed ID: 24004563 [TBL] [Abstract][Full Text] [Related]
9. Nested association mapping of important agronomic traits in three interspecific soybean populations. Beche E; Gillman JD; Song Q; Nelson R; Beissinger T; Decker J; Shannon G; Scaboo AM Theor Appl Genet; 2020 Mar; 133(3):1039-1054. PubMed ID: 31974666 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of genotype imputation in Nelore cattle. Carvalheiro R; Boison SA; Neves HH; Sargolzaei M; Schenkel FS; Utsunomiya YT; O'Brien AM; Sölkner J; McEwan JC; Van Tassell CP; Sonstegard TS; Garcia JF Genet Sel Evol; 2014 Oct; 46(1):69. PubMed ID: 25927950 [TBL] [Abstract][Full Text] [Related]
11. A genome-wide association study of seed protein and oil content in soybean. Hwang EY; Song Q; Jia G; Specht JE; Hyten DL; Costa J; Cregan PB BMC Genomics; 2014 Jan; 15():1. PubMed ID: 24382143 [TBL] [Abstract][Full Text] [Related]
12. High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep1. O'Brien AC; Judge MM; Fair S; Berry DP J Anim Sci; 2019 Apr; 97(4):1550-1567. PubMed ID: 30722011 [TBL] [Abstract][Full Text] [Related]
13. Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans. Xavier A; Muir WM; Rainey KM BMC Bioinformatics; 2016 Feb; 17():55. PubMed ID: 26830693 [TBL] [Abstract][Full Text] [Related]
14. The utility of low-density genotyping for imputation in the Thoroughbred horse. Corbin LJ; Kranis A; Blott SC; Swinburne JE; Vaudin M; Bishop SC; Woolliams JA Genet Sel Evol; 2014 Feb; 46(1):9. PubMed ID: 24495673 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
16. Genetic Characterization of the Soybean Nested Association Mapping Population. Song Q; Yan L; Quigley C; Jordan BD; Fickus E; Schroeder S; Song BH; Charles An YQ; Hyten D; Nelson R; Rainey K; Beavis WD; Specht J; Diers B; Cregan P Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724064 [TBL] [Abstract][Full Text] [Related]
17. Design of low density SNP chips for genotype imputation in layer chicken. Herry F; Hérault F; Picard Druet D; Varenne A; Burlot T; Le Roy P; Allais S BMC Genet; 2018 Dec; 19(1):108. PubMed ID: 30514201 [TBL] [Abstract][Full Text] [Related]
18. Assessing single-nucleotide polymorphism selection methods for the development of a low-density panel optimized for imputation in South African Drakensberger beef cattle. Lashmar SF; Berry DP; Pierneef R; Muchadeyi FC; Visser C J Anim Sci; 2021 Jul; 99(7):. PubMed ID: 33860324 [TBL] [Abstract][Full Text] [Related]
19. Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels. Gualdrón Duarte JL; Bates RO; Ernst CW; Raney NE; Cantet RJ; Steibel JP BMC Genet; 2013 May; 14():38. PubMed ID: 23651538 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of imputation using the most common sires as reference population in layer chickens. Heidaritabar M; Calus MP; Vereijken A; Groenen MA; Bastiaansen JW BMC Genet; 2015 Aug; 16():101. PubMed ID: 26282557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]