These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35275441)
1. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. Yushkova E Environ Mol Mutagen; 2022 Feb; 63(2):84-97. PubMed ID: 35275441 [TBL] [Abstract][Full Text] [Related]
2. Transgenerational effects in offspring of chronically irradiated populations of Drosophila melanogaster after the Chernobyl accident. Yushkova E; Bashlykova L Environ Mol Mutagen; 2021 Jan; 62(1):39-51. PubMed ID: 33233025 [TBL] [Abstract][Full Text] [Related]
3. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogaster living for a long time in the zone of the Chernobyl nuclear disaster. Yushkova E J Environ Radioact; 2022 Oct; 251-252():106945. PubMed ID: 35696883 [TBL] [Abstract][Full Text] [Related]
4. Effects of historic radiation dose on the frequency of sex-linked recessive lethals in Drosophila populations following the Chernobyl nuclear accident. Hancock S; Vo NTK; Byun SH; Zainullin VG; Seymour CB; Mothersill C Environ Res; 2019 May; 172():333-337. PubMed ID: 30825683 [TBL] [Abstract][Full Text] [Related]
5. The mutation frequency of Drosophila melanogaster populations living under conditions of increased background radiation due to the Chernobyl accident. Zainullin VG; Shevchenko VA; Mjasnjankina EN; Generalova MV; Rakin AO Sci Total Environ; 1992 Feb; 112(1):37-44. PubMed ID: 1574703 [TBL] [Abstract][Full Text] [Related]
6. [Mutation processes in the natural populations of Drosophila and Hirundo rustica from Ukrainian radiation contaminated territories]. Kozeretskaia IA; Protsenko AV; Afanas'eva ES; Rushkovskiĭ SR; Chuba AI; Miusse TA; Meller AP Tsitol Genet; 2008; 42(4):63-8. PubMed ID: 19140433 [TBL] [Abstract][Full Text] [Related]
7. One-Decade-Spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the chernobyl nuclear disaster. Hancock S; Vo NTK; Goncharova RI; Seymour CB; Byun SH; Mothersill CE Environ Res; 2020 Jan; 180():108816. PubMed ID: 31627157 [TBL] [Abstract][Full Text] [Related]
8. [Study on genetic radioresistance of natural Drosophila Melanogaster population from radionuclide contaminated regions of Byelarus]. Glushkova IV; Mosse IB; Anosheko IP; Maleĭ LP Radiats Biol Radioecol; 2002; 42(2):124-9. PubMed ID: 12004604 [TBL] [Abstract][Full Text] [Related]
9. [Genetic monitoring of natural Drosophila populations in radiation contaminated regions of Belarus]. Mossé IB; Mikhaĭlova ME; Glushkova IV; Kasinskaia SI; Anoshenko IP; Aksiutik TV; Tikhanovich NI; Kamysh NA Radiats Biol Radioecol; 2006; 46(3):287-95. PubMed ID: 16869160 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of recessive sex-linked lethal mutations in genotypically different strains of Drosophila melanogaster MS and w, exposed in the 5-kilometer zone of the accident at the Chernobyl nuclear reactor]. Aslanian MM; Kim AI; Magomedova MA; Fatkulbaianova NL Genetika; 1994 Sep; 30(9):1215-9. PubMed ID: 8001804 [TBL] [Abstract][Full Text] [Related]
11. Effects of genomic instability in populations of Kravets A; Sokolova D Int J Radiat Biol; 2023; 99(3):510-515. PubMed ID: 35930480 [TBL] [Abstract][Full Text] [Related]
12. [Genomic variation of laboratory strains and natural populations of Drosophila melanogaster exposed to X-irradiation]. Shokhanov SO; Shcherbata GR; Chernik IaI Genetika; 1997 Jan; 33(1):25-30. PubMed ID: 9162688 [TBL] [Abstract][Full Text] [Related]
13. [The dynamics of variability of the genotype of experimental populations of Drosophila melanogaster by chronic radiation exposure]. Zaĭnullin VG; Iushkova EA Radiats Biol Radioecol; 2009; 49(1):67-71. PubMed ID: 19368324 [TBL] [Abstract][Full Text] [Related]
14. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Ryabokon NI; Goncharova RI Radiat Environ Biophys; 2006 Sep; 45(3):167-77. PubMed ID: 16862442 [TBL] [Abstract][Full Text] [Related]
15. Chronic irradiation of Scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects. Yoschenko VI; Kashparov VA; Melnychuk MD; Levchuk SE; Bondar YO; Lazarev M; Yoschenko MI; Farfán EB; Jannik GT Health Phys; 2011 Oct; 101(4):393-408. PubMed ID: 21878765 [TBL] [Abstract][Full Text] [Related]
16. Effects of non-human species irradiation after the Chernobyl NPP accident. Geras'kin SA; Fesenko SV; Alexakhin RM Environ Int; 2008 Aug; 34(6):880-97. PubMed ID: 18234336 [TBL] [Abstract][Full Text] [Related]
17. [The mutability of natural populations and laboratory strains of Drosophila under conditions of chronic irradiation at small doses of low intensity]. Zaĭnullin VG Radiats Biol Radioecol; 1996; 36(4):561-6. PubMed ID: 8925029 [TBL] [Abstract][Full Text] [Related]
18. [Adaptation processes in natural Drosophila populations in radiation contaminated Belarus regions before and after radiation exposure removal]. Glushkova IV; Mossé IB; Aksiutik TV Radiats Biol Radioecol; 2003; 43(2):210-2. PubMed ID: 12754812 [TBL] [Abstract][Full Text] [Related]
19. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. Garnier-Laplace J; Geras'kin S; Della-Vedova C; Beaugelin-Seiller K; Hinton TG; Real A; Oudalova A J Environ Radioact; 2013 Jul; 121():12-21. PubMed ID: 22336569 [TBL] [Abstract][Full Text] [Related]
20. Twenty five years of the National Academy of Medical Sciences of Ukraine - progress and priorities for future of radiation medicine and biology. Bazyka D Probl Radiac Med Radiobiol; 2017 Dec; 22():10-14. PubMed ID: 29286493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]