These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35275632)

  • 1. Oxygen-Atom Defect Formation in Polyoxovanadate Clusters via Proton-Coupled Electron Transfer.
    Schreiber E; Fertig AA; Brennessel WW; Matson EM
    J Am Chem Soc; 2022 Mar; 144(11):5029-5041. PubMed ID: 35275632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-Coupled Electron Transfer at the Surface of Polyoxovanadate-Alkoxide Clusters.
    Proe KR; Schreiber E; Matson EM
    Acc Chem Res; 2023 Jun; 56(12):1602-1612. PubMed ID: 37279252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-State Dependence of Proton Uptake in Polyoxovanadate-alkoxide Clusters.
    Schreiber E; Brennessel WW; Matson EM
    Inorg Chem; 2022 Mar; 61(12):4789-4800. PubMed ID: 35293218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface ligand length influences kinetics of H-atom uptake in polyoxovanadate-alkoxide clusters.
    Peter CYM; Schreiber E; Proe KR; Matson EM
    Dalton Trans; 2023 Nov; 52(43):15775-15785. PubMed ID: 37850536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2018 Sep; 51(9):2014-2022. PubMed ID: 30179459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate cluster.
    Cooney SE; Fertig AA; Buisch MR; Brennessel WW; Matson EM
    Chem Sci; 2022 Nov; 13(43):12726-12737. PubMed ID: 36519047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselectivity of concerted proton-electron transfer at the surface of a polyoxovanadate cluster.
    Schreiber E; Brennessel WW; Matson EM
    Chem Sci; 2023 Feb; 14(6):1386-1396. PubMed ID: 36794190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insight into rapid oxygen-atom transfer from a calix-functionalized polyoxovanadate.
    Fertig AA; Cooney SE; Meyer RL; Brennessel WW; Matson EM
    Chem Commun (Camb); 2022 May; 58(40):6004-6007. PubMed ID: 35485443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-Induced, Oxygen-Atom Defect Formation in Reduced Polyoxovanadate-Alkoxide Clusters.
    Schreiber E; Petel BE; Matson EM
    J Am Chem Soc; 2020 Jun; 142(22):9915-9919. PubMed ID: 32433883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O
    Cooney SE; Schreiber E; Ferrigno BM; Matson EM
    Chem Commun (Camb); 2024 May; 60(43):5610-5613. PubMed ID: 38713068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides.
    Petel BE; Brennessel WW; Matson EM
    J Am Chem Soc; 2018 Jul; 140(27):8424-8428. PubMed ID: 29944352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.
    Yin G
    Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Continuum of Proton-Coupled Electron Transfer Reactivity.
    Darcy JW; Koronkiewicz B; Parada GA; Mayer JM
    Acc Chem Res; 2018 Oct; 51(10):2391-2399. PubMed ID: 30234963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Metal-to-Oxygen Ratios via M═O Bond Cleavage in Polyoxovanadate Alkoxide Clusters.
    Petel BE; Fertig AA; Maiola ML; Brennessel WW; Matson EM
    Inorg Chem; 2019 Aug; 58(16):10462-10471. PubMed ID: 30938519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and structural characterization of a series of Mn(III)OR complexes, including a water-soluble Mn(III)OH that promotes aerobic hydrogen-atom transfer.
    Coggins MK; Brines LM; Kovacs JA
    Inorg Chem; 2013 Nov; 52(21):12383-93. PubMed ID: 24156315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxo Iron(III) Sites in a Metal-Organic Framework: Proton-Coupled Electron Transfer and Catalytic Oxidation of Alcohol with Molecular Oxygen.
    Ding CW; Luo W; Zhou JY; Ma XJ; Chen GH; Zhou XP; Li D
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45621-45628. PubMed ID: 31724842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters.
    Petel BE; Matson EM
    Chem Commun (Camb); 2020 Nov; 56(88):13477-13490. PubMed ID: 33057532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn-OH
    Reed CJ; Agapie T
    J Am Chem Soc; 2018 Aug; 140(34):10900-10908. PubMed ID: 30064207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer.
    Kurtz DA; Dhar D; Elgrishi N; Kandemir B; McWilliams SF; Howland WC; Chen CH; Dempsey JL
    J Am Chem Soc; 2021 Mar; 143(9):3393-3406. PubMed ID: 33621088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.