BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35276035)

  • 21. Separation of Isobaric Mono- and Dimethylated RGG-Repeat Peptides by Differential Ion Mobility-Mass Spectrometry.
    Winter DL; Mastellone J; Kabir KMM; Wilkins MR; Donald WA
    Anal Chem; 2019 Sep; 91(18):11827-11833. PubMed ID: 31429255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples.
    Pičmanová M; Moses T; Cortada-Garcia J; Barrett G; Florance H; Pandor S; Burgess K
    Metabolomics; 2022 Feb; 18(3):16. PubMed ID: 35229219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Experimental Conditions on the Ratio of 25-Hydroxyvitamin D
    Oranzi NR; Polfer NC; Lei J; Yost RA
    Anal Chem; 2018 Nov; 90(22):13549-13556. PubMed ID: 30379063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the Integrity of Gas-Phase Conformers of Sodiated 25-Hydroxyvitamin D3 by Drift Tube, Traveling Wave, Trapped, and High-Field Asymmetric Ion Mobility.
    Oranzi NR; Kemperman RHJ; Wei MS; Petkovska VI; Granato SW; Rochon B; Kaszycki J; La Rotta A; Jeanne Dit Fouque K; Fernandez-Lima F; Yost RA
    Anal Chem; 2019 Mar; 91(6):4092-4099. PubMed ID: 30807105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.
    Baglai A; Gargano AFG; Jordens J; Mengerink Y; Honing M; van der Wal S; Schoenmakers PJ
    J Chromatogr A; 2017 Dec; 1530():90-103. PubMed ID: 29146423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Analyses of Therapeutic Antibodies Using High-Field Asymmetric Waveform Ion Mobility Spectrometry Combined with SampleStream and Intact Protein Mass Spectrometry.
    Shi RL; Dillon MA; Compton PD; Sawyer WS; Thorup JR; Kwong M; Chan P; Chiu CPC; Li R; Yadav R; Lee GY; Gober JG; Li Z; ElSohly AM; Ovacik AM; Koerber JT; Spiess C; Josephs JL; Tran JC
    Anal Chem; 2023 Nov; 95(47):17263-17272. PubMed ID: 37956201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unwrapping Wrap-around in Gas (or Liquid) Chromatographic Cyclic Ion Mobility-Mass Spectrometry.
    Breen J; Hashemihedeshi M; Amiri R; Dorman FL; Jobst KJ
    Anal Chem; 2022 Aug; 94(32):11113-11117. PubMed ID: 35913896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of Single Pulse and Multiplexed Drift-Tube Ion Mobility Spectrometry Coupled to Micropillar Array Column for Proteomics Studies.
    Nix C; Cobraiville G; Gou MJ; Fillet M
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35886845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans.
    Fenclova M; Stranska-Zachariasova M; Benes F; Novakova A; Jonatova P; Kren V; Vitek L; Hajslova J
    Anal Bioanal Chem; 2020 Feb; 412(4):819-832. PubMed ID: 31919606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion mobility in the pharmaceutical industry: an established biophysical technique or still niche?
    Campuzano ID; Lippens JL
    Curr Opin Chem Biol; 2018 Feb; 42():147-159. PubMed ID: 29306688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-line two-dimensional liquid chromatography hyphenated to mass spectrometry and ion mobility-mass spectrometry for the separation of carbohydrates from lignocellulosic biomass.
    Reymond C; Masle AL; Colas C; Charon N
    J Chromatogr A; 2021 Jan; 1636():461716. PubMed ID: 33316561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples.
    Johnson KR; Greguš M; Ivanov AR
    J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
    Levin DS; Miller RA; Nazarov EG; Vouros P
    Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of pulse glow discharge-ion mobility spectrometry and liquid chromatography with tandem mass spectrometry based on multiplug filtration cleanup for the analysis of tricaine mesylate residues in fish and water.
    Zou N; Chen R; Qin Y; Song S; Tang X; Pan C
    J Sep Sci; 2016 Sep; 39(18):3638-46. PubMed ID: 27440123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
    Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR
    Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting ion-mobility mass spectrometry for unraveling proteome complexity.
    Perchepied S; Zhou Z; Mitulović G; Eeltink S
    J Sep Sci; 2023 Sep; 46(18):e2300512. PubMed ID: 37746674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.