These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 35276161)
1. Ageing and fragmentation of marine microplastics. Sorasan C; Edo C; González-Pleiter M; Fernández-Piñas F; Leganés F; Rodríguez A; Rosal R Sci Total Environ; 2022 Jun; 827():154438. PubMed ID: 35276161 [TBL] [Abstract][Full Text] [Related]
2. Generation of nanoplastics during the photoageing of low-density polyethylene. Sorasan C; Edo C; González-Pleiter M; Fernández-Piñas F; Leganés F; Rodríguez A; Rosal R Environ Pollut; 2021 Nov; 289():117919. PubMed ID: 34385135 [TBL] [Abstract][Full Text] [Related]
3. How small is the big problem? Small microplastics <300 μm abundant in marine surface waters of the Great Barrier Reef Marine Park. Carbery M; Herb F; Reynes J; Pham CK; Fong WK; Lehner R Mar Pollut Bull; 2022 Nov; 184():114179. PubMed ID: 36206615 [TBL] [Abstract][Full Text] [Related]
4. Fragmentation of nano- and microplastics from virgin- and additive-containing polypropylene by accelerated photooxidation. Song YK; Hong SH; Eo S; Shim WJ Environ Pollut; 2023 Jun; 327():121590. PubMed ID: 37030603 [TBL] [Abstract][Full Text] [Related]
5. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Pramanik BK; Pramanik SK; Monira S Chemosphere; 2021 Nov; 282():131053. PubMed ID: 34098311 [TBL] [Abstract][Full Text] [Related]
6. Booming microplastics generation in landfill: An exponential evolution process under temporal pattern. Huang Q; Cheng Z; Yang C; Wang H; Zhu N; Cao X; Lou Z Water Res; 2022 Sep; 223():119035. PubMed ID: 36067604 [TBL] [Abstract][Full Text] [Related]
7. Effects of microplastics and nanoplastics on marine environment and human health. Sana SS; Dogiparthi LK; Gangadhar L; Chakravorty A; Abhishek N Environ Sci Pollut Res Int; 2020 Dec; 27(36):44743-44756. PubMed ID: 32876819 [TBL] [Abstract][Full Text] [Related]
8. The digestive system of a cricket pulverizes polyethylene microplastics down to the nanoplastic scale. Ritchie MW; Provencher JF; Allison JE; Muzzatti MJ; MacMillan HA Environ Pollut; 2024 Feb; 343():123168. PubMed ID: 38104765 [TBL] [Abstract][Full Text] [Related]
9. Microplastic reorganization in urban river before and after rainfall. Wei Y; Dou P; Xu D; Zhang Y; Gao B Environ Pollut; 2022 Dec; 314():120326. PubMed ID: 36195193 [TBL] [Abstract][Full Text] [Related]
10. Experimental evidence of plastic particles transfer at the water-air interface through bubble bursting. Masry M; Rossignol S; Temime Roussel B; Bourgogne D; Bussière PO; R'mili B; Wong-Wah-Chung P Environ Pollut; 2021 Jul; 280():116949. PubMed ID: 33774549 [TBL] [Abstract][Full Text] [Related]
11. From bottle to microplastics: Can we estimate how our plastic products are breaking down? Sipe JM; Bossa N; Berger W; von Windheim N; Gall K; Wiesner MR Sci Total Environ; 2022 Mar; 814():152460. PubMed ID: 34973311 [TBL] [Abstract][Full Text] [Related]
12. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea. Jung JW; Kim S; Kim YS; Jeong S; Lee J Sci Total Environ; 2022 Jun; 825():154015. PubMed ID: 35189238 [TBL] [Abstract][Full Text] [Related]
13. Study on the impact of photoaging on the generation of very small microplastics (MPs) and nanoplastics (NPs) and the wettability of plastic surface. Huang Z; Wang H Environ Sci Pollut Res Int; 2023 Aug; 30(40):92963-92982. PubMed ID: 37501030 [TBL] [Abstract][Full Text] [Related]
14. Quantification of microplastic by particle size down to 1.1 μm in surface road dust in an urban city, Japan. Morioka T; Tanaka S; Yamada Y; Yukioka S; Aiba F Environ Pollut; 2023 Oct; 334():122198. PubMed ID: 37453688 [TBL] [Abstract][Full Text] [Related]
15. Toxicity assessment of environmental MPs and NPs and polystyrene NPs on the bivalve Corbicula fluminea using a multi-marker approach. Latchere O; Roman C; Métais I; Perrein-Ettajani H; Mouloud M; Georges D; Feurtet-Mazel A; Gigault J; Catrouillet C; Baudrimont M; Châtel A Comp Biochem Physiol C Toxicol Pharmacol; 2023 Nov; 273():109714. PubMed ID: 37572933 [TBL] [Abstract][Full Text] [Related]
16. Polystyrene nanoplastics affected the nutritional quality of Chlamys farreri through disturbing the function of gills and physiological metabolism: Comparison with microplastics. Sun Y; Zhao X; Sui Q; Sun X; Zhu L; Booth AM; Chen B; Qu K; Xia B Sci Total Environ; 2024 Feb; 910():168457. PubMed ID: 37981153 [TBL] [Abstract][Full Text] [Related]
17. Relationship between the Carbonyl Index (CI) and Fragmentation of Polyolefin Plastics during Aging. Syranidou E; Karkanorachaki K; Barouta D; Papadaki E; Moschovas D; Avgeropoulos A; Kalogerakis N Environ Sci Technol; 2023 May; 57(21):8130-8138. PubMed ID: 37194994 [TBL] [Abstract][Full Text] [Related]
18. Occurrence and spatial distribution of microplastics in beach sediments of Cox's Bazar, Bangladesh. Rahman SMA; Robin GS; Momotaj M; Uddin J; Siddique MAM Mar Pollut Bull; 2020 Nov; 160():111587. PubMed ID: 32871432 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent long-term weathering converting floating polypropylene macro- and microplastics into nanoplastics in coastal seawater environments. Wu X; Zhao X; Chen R; Liu P; Liang W; Wang J; Shi D; Teng M; Wang X; Gao S Water Res; 2023 Aug; 242():120165. PubMed ID: 37320877 [TBL] [Abstract][Full Text] [Related]
20. Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea. Eo S; Hong SH; Song YK; Lee J; Lee J; Shim WJ Environ Pollut; 2018 Jul; 238():894-902. PubMed ID: 29631234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]