These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35276311)

  • 1. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest.
    Kirschen MP; Majmudar T; Diaz-Arrastia R; Berg R; Abella BS; Topjian A; Balu R
    Resuscitation; 2022 Jun; 175():81-87. PubMed ID: 35276311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest.
    Kirschen MP; Majmudar T; Beaulieu F; Burnett R; Shaik M; Morgan RW; Baker W; Ko T; Balu R; Agarwal K; Lourie K; Sutton R; Kilbaugh T; Diaz-Arrastia R; Berg R; Topjian A
    Resuscitation; 2021 Nov; 168():110-118. PubMed ID: 34600027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest.
    Hoiland RL; Sekhon MS; Cardim D; Wood MD; Gooderham P; Foster D; Griesdale DE
    Resuscitation; 2020 Jul; 152():184-191. PubMed ID: 32229218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Optimal Arterial Pressure with Near-Infrared Spectroscopy in Traumatic Brain Injury Patients.
    Oshorov A; Savin I; Alexandrova E; Bragin D
    Adv Exp Med Biol; 2022; 1395():133-137. PubMed ID: 36527627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review.
    Rikhraj KJK; Wood MD; Hoiland RL; Thiara S; Griesdale DEG; Sekhon MS
    Neurocrit Care; 2021 Apr; 34(2):621-634. PubMed ID: 32572823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association between early impairment in cerebral autoregulation and outcome in a pediatric swine model of cardiac arrest.
    Kirschen MP; Morgan RW; Majmudar T; Landis WP; Ko T; Balu R; Balasubramanian S; Topjian A; Sutton RM; Berg RA; Kilbaugh TJ
    Resusc Plus; 2020 Dec; 4():100051. PubMed ID: 34223325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative monitoring of cerebrovascular autoregulation in infants and toddlers receiving major elective surgery to determine the individually optimal blood pressure - a pilot study.
    Iller M; Neunhoeffer F; Heimann L; Zipfel J; Schuhmann MU; Scherer S; Dietzel M; Fuchs J; Hofbeck M; Hieber S; Fideler F
    Front Pediatr; 2023; 11():1110453. PubMed ID: 36865688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury.
    Zipfel J; Hegele D; Hockel K; Kerscher SR; Heimberg E; Czosnyka M; Neunhoeffer F; Schuhmann MU
    Childs Nerv Syst; 2022 Sep; 38(9):1717-1726. PubMed ID: 35680685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest.
    Lee JK; Brady KM; Chung SE; Jennings JM; Whitaker EE; Aganga D; Easley RB; Heitmiller K; Jamrogowicz JL; Larson AC; Lee JH; Jordan LC; Hogue CW; Lehmann CU; Bembea MM; Hunt EA; Koehler RC; Shaffner DH
    Resuscitation; 2014 Oct; 85(10):1387-93. PubMed ID: 25046743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study.
    Sekhon MS; Smielewski P; Bhate TD; Brasher PM; Foster D; Menon DK; Gupta AK; Czosnyka M; Henderson WR; Gin K; Wong G; Griesdale DE
    Resuscitation; 2016 Sep; 106():120-5. PubMed ID: 27255957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series.
    Diedler J; Santos E; Poli S; Sykora M
    Crit Care; 2014 Mar; 18(2):R51. PubMed ID: 24666981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury.
    Zweifel C; Lavinio A; Steiner LA; Radolovich D; Smielewski P; Timofeev I; Hiler M; Balestreri M; Kirkpatrick PJ; Pickard JD; Hutchinson P; Czosnyka M
    Neurosurg Focus; 2008 Oct; 25(4):E2. PubMed ID: 18828700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrovascular Pressure Reactivity According to Long-Pressure Reactivity Index During Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage.
    Sanchez-Porras R; Ramírez-Cuapio FL; Hecht N; Seule M; Díaz-Peregrino R; Unterberg A; Woitzik J; Dreier JP; Sakowitz OW; Santos E
    Neurocrit Care; 2023 Aug; 39(1):135-144. PubMed ID: 36697998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Long' pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients.
    Sánchez-Porras R; Santos E; Czosnyka M; Zheng Z; Unterberg AW; Sakowitz OW
    Acta Neurochir (Wien); 2012 Sep; 154(9):1575-81. PubMed ID: 22743796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Intracranial Pressure-Derived Cerebrovascular Reactivity Indices against the Lower Limit of Autoregulation, Part II: Experimental Model of Arterial Hypotension.
    Zeiler FA; Lee JK; Smielewski P; Czosnyka M; Brady K
    J Neurotrauma; 2018 Dec; 35(23):2812-2819. PubMed ID: 29808745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Impaired Autoregulation Associated with Mortality in Patients with Severe Cerebral Diseases?
    Schmidt B; Lezaic V; Weinhold M; Plontke R; Schwarze J; Klingelhöfer J
    Acta Neurochir Suppl; 2016; 122():181-5. PubMed ID: 27165903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrovascular Pressure Reactivity Has a Strong and Independent Association With Outcome in Children With Severe Traumatic Brain Injury.
    Smith CA; Rohlwink UK; Mauff K; Thango NS; Hina TS; Salie S; Enslin JMN; Figaji AA
    Crit Care Med; 2023 May; 51(5):573-583. PubMed ID: 36790173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia.
    Burton VJ; Gerner G; Cristofalo E; Chung SE; Jennings JM; Parkinson C; Koehler RC; Chavez-Valdez R; Johnston MV; Northington FJ; Lee JK
    BMC Neurol; 2015 Oct; 15():209. PubMed ID: 26486728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.
    Steiner LA; Czosnyka M; Piechnik SK; Smielewski P; Chatfield D; Menon DK; Pickard JD
    Crit Care Med; 2002 Apr; 30(4):733-8. PubMed ID: 11940737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.