These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35276378)

  • 21. Synthesis of biodiesel from chicken skin waste: an economic and environmental biofuel feedstock in Bangladesh.
    Chowdhury H; Barua P; Chowdhury T; Hossain N; Islam R; Sait SM; Salam B
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37679-37688. PubMed ID: 33723785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling and process optimization for biodiesel production from Nannochloropsis salina using artificial neural network.
    Vinoth Arul Raj J; Praveen Kumar R; Vijayakumar B; Gnansounou E; Bharathiraja B
    Bioresour Technol; 2021 Jun; 329():124872. PubMed ID: 33640695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst.
    Foroutan R; Mohammadi R; Esmaeili H; Mirzaee Bektashi F; Tamjidi S
    Waste Manag; 2020 Mar; 105():373-383. PubMed ID: 32120264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation on the effect of ultrasound irradiation on biodiesel properties and transesterification parameters.
    Ponnappan VS; Munuswamy DB; Nagappan B; Devarajan Y
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64769-64777. PubMed ID: 34318415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fillet Fish Fortified with Algal Extracts of
    Hafez MSMAE; Rashedy SH; Abdelmotilib NM; El-Hassayeb HEA; Cotas J; Pereira L
    Mar Drugs; 2022 Dec; 20(12):. PubMed ID: 36547932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.
    Gurunathan B; Ravi A
    Bioresour Technol; 2015; 188():124-7. PubMed ID: 25637280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility of biodiesel production from waste cooking oil: lab-scale to pilot-scale analysis.
    Devaraj K; Mani Y; Rawoof SAA; Thanarasu A; Dhanasekaran A; Subramanian S
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25828-25835. PubMed ID: 32405946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of waste frying oil into biodiesel using recoverable nanocatalyst based on magnetic graphene oxide supported ternary mixed metal oxide nanoparticles.
    Rezania S; Kamboh MA; Arian SS; Al-Dhabi NA; Arasu MV; Esmail GA; Kumar Yadav K
    Bioresour Technol; 2021 Mar; 323():124561. PubMed ID: 33373800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca.
    Suganya T; Renganathan S
    Bioresour Technol; 2012 Mar; 107():319-26. PubMed ID: 22209436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle sustainability assessment of optimized biodiesel production from used rice bran oil employing waste derived-hydroxyapatite supported vanadium catalyst.
    Pradhan P; Karan P; Chakraborty R
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20064-20077. PubMed ID: 34532806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae.
    Bae YJ; Ryu C; Jeon JK; Park J; Suh DJ; Suh YW; Chang D; Park YK
    Bioresour Technol; 2011 Feb; 102(3):3512-20. PubMed ID: 21129955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future.
    Pravin R; Baskar G; Rokhum SL; Pugazhendhi A
    Chemosphere; 2023 Oct; 339():139724. PubMed ID: 37541444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30.
    Inayat A; Nassef AM; Rezk H; Sayed ET; Abdelkareem MA; Olabi AG
    Sci Total Environ; 2019 May; 666():821-827. PubMed ID: 30818206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification.
    Castillo López B; Esteban Cerdán L; Robles Medina A; Navarro López E; Martín Valverde L; Hita Peña E; González Moreno PA; Molina Grima E
    J Biosci Bioeng; 2015 Jun; 119(6):706-11. PubMed ID: 25575971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of macroalgae for biodiesel production: Screening and evaluation studies.
    Abomohra AE; El-Naggar AH; Baeshen AA
    J Biosci Bioeng; 2018 Feb; 125(2):231-237. PubMed ID: 29037768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimisation, experimental validation and thermodynamic study of the sequential oil extraction and biodiesel production processes from seeds of Sterculia foetida.
    Sambasivam KM; Murugavelh S
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31301-31314. PubMed ID: 31471852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.
    Karmee SK; Patria RD; Lin CS
    Int J Mol Sci; 2015 Feb; 16(3):4362-71. PubMed ID: 25809602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential heterogeneous nano-catalyst via integrating hydrothermal carbonization for biodiesel production using waste cooking oil.
    Abdullah RF; Rashid U; Hazmi B; Ibrahim ML; Tsubota T; Alharthi FA
    Chemosphere; 2022 Jan; 286(Pt 3):131913. PubMed ID: 34418662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.
    Cao H; Zhang Z; Wu X; Miao X
    Biomed Res Int; 2013; 2013():930686. PubMed ID: 24195081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.