These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35276457)

  • 1. Does restricting arm motion compromise short sprint running performance?
    Brooks LC; Weyand PG; Clark KP
    Gait Posture; 2022 May; 94():114-118. PubMed ID: 35276457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors that differentiate acceleration ability in field sport athletes.
    Lockie RG; Murphy AJ; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2011 Oct; 25(10):2704-14. PubMed ID: 21878822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic cost of human running: is swinging the arms worth it?
    Arellano CJ; Kram R
    J Exp Biol; 2014 Jul; 217(Pt 14):2456-61. PubMed ID: 25031455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute Kinematic and Kinetic Adaptations to Wearable Resistance During Sprint Acceleration.
    Macadam P; Simperingham KD; Cronin JB
    J Strength Cond Res; 2017 May; 31(5):1297-1304. PubMed ID: 27548784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations.
    Simperingham KD; Cronin JB; Ross A
    Sports Med; 2016 Nov; 46(11):1619-1645. PubMed ID: 26914267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.
    Kawamori N; Nosaka K; Newton RU
    J Strength Cond Res; 2013 Mar; 27(3):568-73. PubMed ID: 22531618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical ability of force application as a determinant factor of sprint performance.
    Morin JB; Edouard P; Samozino P
    Med Sci Sports Exerc; 2011 Sep; 43(9):1680-8. PubMed ID: 21364480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.
    Bezodis NE; North JS; Razavet JL
    J Sports Sci; 2017 Sep; 35(18):1-8. PubMed ID: 27700312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds.
    Hamner SR; Delp SL
    J Biomech; 2013 Feb; 46(4):780-7. PubMed ID: 23246045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change-of-Direction Ability, Linear Sprint Speed, and Sprint Momentum in Elite Female Athletes: Differences Between Three Different Team Sports.
    Freitas TT; Pereira LA; Alcaraz PE; Comyns TM; Azevedo PHSM; Loturco I
    J Strength Cond Res; 2022 Jan; 36(1):262-267. PubMed ID: 33065701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.
    Girard O; Brocherie F; Morin JB; Millet GP
    J Sports Sci; 2016; 34(12):1190-8. PubMed ID: 26473996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg power and hopping stiffness: relationship with sprint running performance.
    Chelly SM; Denis C
    Med Sci Sports Exerc; 2001 Feb; 33(2):326-33. PubMed ID: 11224825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Clustered Repeated-Sprint Running Protocol for Team-Sport Athletes Performed in Normobaric Hypoxia.
    Morrison J; McLellan C; Minahan C
    J Sports Sci Med; 2015 Dec; 14(4):857-63. PubMed ID: 26664284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderate Load Resisted Sprints Do Not Improve Subsequent Sprint Performance in Varsity-Level Sprinters.
    Thompson KMA; Whinton AK; Ferth S; Spriet LL; Burr JF
    J Strength Cond Res; 2021 Jan; 35(1):72-77. PubMed ID: 29570579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sprint Running Performance and Technique Changes in Athletes During Periodized Training: An Elite Training Group Case Study.
    Bezodis IN; Kerwin DG; Cooper SM; Salo AIT
    Int J Sports Physiol Perform; 2018 Jul; 13(6):755-762. PubMed ID: 29140147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-stance phase force contributions to acceleration sprint performance in semi-professional soccer players.
    Wdowski MM; Gittoes MJR
    Eur J Sport Sci; 2020 Apr; 20(3):366-374. PubMed ID: 31167614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.