BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35276462)

  • 1. In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion.
    Liu T; Lin B; Yuan X; Chu Z; Jin W
    Biosens Bioelectron; 2022 Jun; 206():114147. PubMed ID: 35276462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive colorimetric aptasensor for Hg
    Memon AG; Xing Y; Zhou X; Wang R; Liu L; Zeng S; He M; Ma M
    J Hazard Mater; 2020 Feb; 384():120948. PubMed ID: 31610345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive detection of trace Hg
    Tian C; Zhao L; Zhu J; Zhang S
    J Hazard Mater; 2021 Aug; 416():126251. PubMed ID: 34492994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification.
    Xu N; Hou T; Li F
    Analyst; 2019 Jun; 144(12):3800-3806. PubMed ID: 31116196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg
    Babamiri B; Salimi A; Hallaj R
    Biosens Bioelectron; 2018 Apr; 102():328-335. PubMed ID: 29161665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions.
    Wang Y; Wang Y; Wang F; Chi H; Zhao G; Zhang Y; Li T; Wei Q
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):510-517. PubMed ID: 34403860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe
    Luo J; Jiang D; Liu T; Peng J; Chu Z; Jin W
    Biosens Bioelectron; 2018 May; 104():1-7. PubMed ID: 29291463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A target-triggered ultra-sensitive aptasensor for simultaneous detection of Cd
    Pan Y; Wang L; Chen S; Wei Y; Wei X
    Food Chem; 2024 May; 440():138185. PubMed ID: 38100966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Aptasensor Based on Sulfur-Nitrogen Codoped Ordered Mesoporous Carbon and Thymine-Hg
    Lai C; Liu S; Zhang C; Zeng G; Huang D; Qin L; Liu X; Yi H; Wang R; Huang F; Li B; Hu T
    ACS Sens; 2018 Dec; 3(12):2566-2573. PubMed ID: 30411617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.
    Jiang X; Wang H; Wang H; Yuan R; Chai Y
    Anal Chem; 2016 Sep; 88(18):9243-50. PubMed ID: 27529728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.
    Chen J; Tang J; Zhou J; Zhang L; Chen G; Tang D
    Anal Chim Acta; 2014 Jan; 810():10-6. PubMed ID: 24439499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemical aptasensor based on PEI-C
    He B; Wang S
    Mikrochim Acta; 2021 Jan; 188(1):22. PubMed ID: 33404928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples.
    Gao F; Zhan F; Li S; Antwi-Mensah P; Niu L; Wang Q
    Biosens Bioelectron; 2022 Aug; 209():114280. PubMed ID: 35436736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Switching Electrochemical Aptasensor for Single-Step and Specific Detection of Trace Mercury in Dairy Products.
    Zhang X; Huang C; Jiang Y; Jiang Y; Shen J; Han E
    J Agric Food Chem; 2018 Sep; 66(38):10106-10112. PubMed ID: 30183296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg
    Wu Y; Jiang T; Wu Z; Yu R
    Biosens Bioelectron; 2018 Jan; 99():646-652. PubMed ID: 28843197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.).
    Wu D; Wang Y; Zhang Y; Ma H; Pang X; Hu L; Du B; Wei Q
    Biosens Bioelectron; 2016 Aug; 82():9-13. PubMed ID: 27031185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and rapid chemiluminescence aptasensor for Hg
    Qi Y; Xiu FR; Yu G; Huang L; Li B
    Biosens Bioelectron; 2017 Jan; 87():439-446. PubMed ID: 27591718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.
    Zheng W; Teng J; Cheng L; Ye Y; Pan D; Wu J; Xue F; Liu G; Chen W
    Biosens Bioelectron; 2016 Jun; 80():574-581. PubMed ID: 26896792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amperometric aptasensor for ultrasensitive detection of sulfadimethoxine based on exonuclease-assisted target recycling and new signal tracer for amplification.
    You H; Bai L; Yuan Y; Zhou J; Bai Y; Mu Z
    Biosens Bioelectron; 2018 Oct; 117():706-712. PubMed ID: 30014944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg(2+) Using Hg(2+)-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplification.
    Ren W; Zhang Y; Chen HG; Gao ZF; Li NB; Luo HQ
    Anal Chem; 2016 Jan; 88(2):1385-90. PubMed ID: 26704253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.