BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35276500)

  • 1. A GFP-based ratiometric sensor for cellular methionine oxidation.
    Kuldyushev N; Schönherr R; Coburger I; Ahmed M; Hussein RA; Wiesel E; Godbole A; Pfirrmann T; Hoshi T; Heinemann SH
    Talanta; 2022 Jun; 243():123332. PubMed ID: 35276500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor.
    Hussein RA; Ahmed M; Kuldyushev N; Schönherr R; Heinemann SH
    Free Radic Biol Med; 2022 Nov; 192():191-199. PubMed ID: 36152916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical guide for dynamic monitoring of protein oxidation using genetically encoded ratiometric fluorescent biosensors of methionine sulfoxide.
    Péterfi Z; Tarrago L; Gladyshev VN
    Methods; 2016 Oct; 109():149-157. PubMed ID: 27345570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.
    Kato M; Yang YS; Sutter BM; Wang Y; McKnight SL; Tu BP
    Cell; 2019 Apr; 177(3):711-721.e8. PubMed ID: 30982603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress.
    Allu PK; Marada A; Boggula Y; Karri S; Krishnamoorthy T; Sepuri NB
    Mol Biol Cell; 2015 Feb; 26(3):406-19. PubMed ID: 25428986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells.
    Vevea JD; Alessi Wolken DM; Swayne TC; White AB; Pon LA
    J Vis Exp; 2013 Jul; (77):50633. PubMed ID: 23912244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity.
    Tarrago L; Oheix E; Péterfi Z; Gladyshev VN
    Methods Mol Biol; 2018; 1661():285-299. PubMed ID: 28917052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring dynamic changes in mitochondrial calcium levels during apoptosis using a genetically encoded calcium sensor.
    Akimzhanov AM; Boehning D
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21490580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine sulfoxide reduction and the aging process.
    Koc A; Gladyshev VN
    Ann N Y Acad Sci; 2007 Apr; 1100():383-6. PubMed ID: 17460202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation.
    Nicklow EE; Sevier CS
    J Biol Chem; 2020 Jan; 295(2):552-569. PubMed ID: 31806703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases.
    Kim HY; Gladyshev VN
    Mol Biol Cell; 2004 Mar; 15(3):1055-64. PubMed ID: 14699060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cell function by methionine oxidation and reduction.
    Hoshi T; Heinemann S
    J Physiol; 2001 Feb; 531(Pt 1):1-11. PubMed ID: 11179387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins.
    Hansel A; Kuschel L; Hehl S; Lemke C; Agricola HJ; Hoshi T; Heinemann SH
    FASEB J; 2002 Jun; 16(8):911-3. PubMed ID: 12039877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-Cell Imaging of Mitochondrial Redox State in Yeast Cells.
    Liao PC; Yang EJ; Pon LA
    STAR Protoc; 2020 Dec; 1(3):100160. PubMed ID: 33377054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins.
    Lee HM; Choi DW; Kim S; Lee A; Kim M; Roh YJ; Jo YH; Cho HY; Lee HJ; Lee SR; Tarrago L; Gladyshev VN; Kim JH; Lee BC
    ACS Sens; 2022 Jan; 7(1):131-141. PubMed ID: 34936330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution.
    Kim HY; Gladyshev VN
    Biochemistry; 2005 Jun; 44(22):8059-67. PubMed ID: 15924425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.
    Norcross S; Trull KJ; Snaider J; Doan S; Tat K; Huang L; Tantama M
    ACS Sens; 2017 Nov; 2(11):1721-1729. PubMed ID: 29072071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.
    Lismont C; Walton PA; Fransen M
    Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A homologue of elongation factor 1 gamma regulates methionine sulfoxide reductase A gene expression in Saccharomyces cerevisiae.
    Hanbauer I; Boja ES; Moskovitz J
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8199-204. PubMed ID: 12824466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.