BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35276500)

  • 41. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation.
    Lee BC; Péterfi Z; Hoffmann FW; Moore RE; Kaya A; Avanesov A; Tarrago L; Zhou Y; Weerapana E; Fomenko DE; Hoffmann PR; Gladyshev VN
    Mol Cell; 2013 Aug; 51(3):397-404. PubMed ID: 23911929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of thrombosis and vascular function by protein methionine oxidation.
    Gu SX; Stevens JW; Lentz SR
    Blood; 2015 Jun; 125(25):3851-9. PubMed ID: 25900980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.
    Jacques S; Ghesquière B; De Bock PJ; Demol H; Wahni K; Willems P; Messens J; Van Breusegem F; Gevaert K
    Mol Cell Proteomics; 2015 May; 14(5):1217-29. PubMed ID: 25693801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations that suppress the thermosensitivity of green fluorescent protein.
    Siemering KR; Golbik R; Sever R; Haseloff J
    Curr Biol; 1996 Dec; 6(12):1653-63. PubMed ID: 8994830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions.
    Kim HY
    Antioxid Redox Signal; 2013 Sep; 19(9):958-69. PubMed ID: 23198996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetically Encoded Fluorescent Probe for Imaging Apoptosis in Vivo with Spontaneous GFP Complementation.
    Nasu Y; Asaoka Y; Namae M; Nishina H; Yoshimura H; Ozawa T
    Anal Chem; 2016 Jan; 88(1):838-44. PubMed ID: 26597767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a truncated form of Methionine Sulfoxide Reductase A expressed in mouse embryonic stem cells.
    Jia P; Zhang C; Jia Y; Webster KA; Huang X; Kochegarov AA; Lemanski SL; Lemanski LF
    J Biomed Sci; 2011 Jun; 18(1):46. PubMed ID: 21696616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors.
    Li L; Zhang C; Wang P; Wang A; Zhou J; Chen G; Xu J; Yang Y; Zhao Y; Zhang S; Tian Y
    Anal Chem; 2019 Mar; 91(6):3869-3876. PubMed ID: 30777423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic redox measurements with redox-sensitive GFP in plants by confocal laser scanning microscopy.
    Meyer AJ; Brach T
    Methods Mol Biol; 2009; 479():93-107. PubMed ID: 19083173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation.
    Levine RL; Moskovitz J; Stadtman ER
    IUBMB Life; 2000; 50(4-5):301-7. PubMed ID: 11327324
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal profiling of redox-dependent heterogeneity in single cells.
    Radzinski M; Fassler R; Yogev O; Breuer W; Shai N; Gutin J; Ilyas S; Geffen Y; Tsytkin-Kirschenzweig S; Nahmias Y; Ravid T; Friedman N; Schuldiner M; Reichmann D
    Elife; 2018 Jun; 7():. PubMed ID: 29869985
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A.
    Lim JC; Kim G; Levine RL
    Free Radic Biol Med; 2013 Aug; 61():257-64. PubMed ID: 23583331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methionine oxidation and aging.
    Stadtman ER; Van Remmen H; Richardson A; Wehr NB; Levine RL
    Biochim Biophys Acta; 2005 Jan; 1703(2):135-40. PubMed ID: 15680221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins.
    Bigelow DJ; Squier TC
    Biochim Biophys Acta; 2005 Jan; 1703(2):121-34. PubMed ID: 15680220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoactivatable GFP tagging cassettes for protein-tracking studies in the budding yeast Saccharomyces cerevisiae.
    Vorvis C; Markus SM; Lee WL
    Yeast; 2008 Sep; 25(9):651-9. PubMed ID: 18727145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines.
    Bigelow DJ; Squier TC
    Mol Biosyst; 2011 Jul; 7(7):2101-9. PubMed ID: 21594273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The biological significance of methionine sulfoxide stereochemistry.
    Lee BC; Gladyshev VN
    Free Radic Biol Med; 2011 Jan; 50(2):221-7. PubMed ID: 21075204
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase.
    Sharov VS; Schöneich C
    Free Radic Biol Med; 2000 Nov; 29(10):986-94. PubMed ID: 11084287
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system.
    Oien DB; Moskovitz J
    Biochim Biophys Acta Mol Basis Dis; 2019 Jul; 1865(7):1756-1762. PubMed ID: 30481589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resolving oxidative damage to methionine by an unexpected membrane-associated stereoselective reductase discovered using chiral fluorescent probes.
    Makukhin N; Havelka V; Poláchová E; Rampírová P; Tarallo V; Strisovsky K; Míšek J
    FEBS J; 2019 Oct; 286(20):4024-4035. PubMed ID: 31166082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.