These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35276580)

  • 1. Microfabrication of polymer microneedle arrays using two-photon polymerization.
    Mckee S; Lutey A; Sciancalepore C; Poli F; Selleri S; Cucinotta A
    J Photochem Photobiol B; 2022 Apr; 229():112424. PubMed ID: 35276580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of polymer microneedles using a two-photon polymerization and micromolding process.
    Gittard SD; Ovsianikov A; Monteiro-Riviere NA; Lusk J; Morel P; Minghetti P; Lenardi C; Chichkov BN; Narayan RJ
    J Diabetes Sci Technol; 2009 Mar; 3(2):304-11. PubMed ID: 20144361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon polymerization of microneedles for transdermal drug delivery.
    Gittard SD; Ovsianikov A; Chichkov BN; Doraiswamy A; Narayan RJ
    Expert Opin Drug Deliv; 2010 Apr; 7(4):513-33. PubMed ID: 20205601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems.
    Cordeiro AS; Tekko IA; Jomaa MH; Vora L; McAlister E; Volpe-Zanutto F; Nethery M; Baine PT; Mitchell N; McNeill DW; Donnelly RF
    Pharm Res; 2020 Aug; 37(9):174. PubMed ID: 32856172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for monolithic fabrication of polymer microneedles on a platform for transdermal drug delivery.
    Chaudhuri BP; Ceyssens F; Van Hoof C; Puers R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():156-9. PubMed ID: 24109648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of microneedle applications, materials, and fabrication methods.
    Faraji Rad Z; Prewett PD; Davies GJ
    Beilstein J Nanotechnol; 2021; 12():1034-1046. PubMed ID: 34621614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials.
    Doraiswamy A; Ovsianikov A; Gittard SD; Monteiro-Riviere NA; Crombez R; Montalvo E; Shen W; Chichkov BN; Narayan RJ
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6305-12. PubMed ID: 21137723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays.
    Faraji Rad Z; Prewett PD; Davies GJ
    Microsyst Nanoeng; 2021; 7():71. PubMed ID: 34567783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Polymer-Coated 3D Printed Microneedles: Biocompatible Platforms for Minimally Invasive Biosensing Interfaces.
    Keirouz A; Mustafa YL; Turner JG; Lay E; Jungwirth U; Marken F; Leese HS
    Small; 2023 Apr; 19(14):e2206301. PubMed ID: 36596657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing applications for transdermal drug delivery.
    Economidou SN; Lamprou DA; Douroumis D
    Int J Pharm; 2018 Jun; 544(2):415-424. PubMed ID: 29355656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed microneedle arrays for drug delivery.
    Li R; Zhang L; Jiang X; Li L; Wu S; Yuan X; Cheng H; Jiang X; Gou M
    J Control Release; 2022 Oct; 350():933-948. PubMed ID: 35977583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery.
    Xenikakis I; Tsongas K; Tzimtzimis EK; Zacharis CK; Theodoroula N; Kalogianni EP; Demiri E; Vizirianakis IS; Tzetzis D; Fatouros DG
    Int J Pharm; 2021 Mar; 597():120303. PubMed ID: 33540009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of polymeric microneedle arrays for transdermal drug delivery.
    Demir YK; Akan Z; Kerimoglu O
    PLoS One; 2013; 8(10):e77289. PubMed ID: 24194879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed microneedles for transdermal drug delivery: A brief review of two decades.
    Elahpour N; Pahlevanzadeh F; Kharaziha M; Bakhsheshi-Rad HR; Ramakrishna S; Berto F
    Int J Pharm; 2021 Mar; 597():120301. PubMed ID: 33540018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays.
    Trautmann A; Roth GL; Nujiqi B; Walther T; Hellmann R
    Microsyst Nanoeng; 2019; 5():6. PubMed ID: 31057933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing.
    Choo S; Jin S; Jung J
    Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes.
    Villota I; Calvo PC; Campo OI; Fonthal F
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview on the advantages and limitations of 3D printing of microneedles.
    Ozyilmaz ED; Turan A; Comoglu T
    Pharm Dev Technol; 2021 Nov; 26(9):923-933. PubMed ID: 34369288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.