These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35277476)

  • 1. Secondary structure prediction for RNA sequences including N
    Kierzek E; Zhang X; Watson RM; Kennedy SD; Szabat M; Kierzek R; Mathews DH
    Nat Commun; 2022 Mar; 13(1):1271. PubMed ID: 35277476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Test and Refinement of Folding Free Energy Nearest Neighbor Parameters for RNA Including N
    Szabat M; Prochota M; Kierzek R; Kierzek E; Mathews DH
    J Mol Biol; 2022 Sep; 434(18):167632. PubMed ID: 35588868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Structure Prediction of Single Sequences Using RNAstructure.
    Xu ZZ; Mathews DH
    Methods Mol Biol; 2016; 1490():15-34. PubMed ID: 27665590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAstructure: software for RNA secondary structure prediction and analysis.
    Reuter JS; Mathews DH
    BMC Bioinformatics; 2010 Mar; 11():129. PubMed ID: 20230624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification.
    Roost C; Lynch SR; Batista PJ; Qu K; Chang HY; Kool ET
    J Am Chem Soc; 2015 Feb; 137(5):2107-15. PubMed ID: 25611135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines.
    Kierzek E; Kierzek R
    Nucleic Acids Res; 2003 Aug; 31(15):4472-80. PubMed ID: 12888507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating RNA Secondary Structure Folding Free Energy Changes with efn2.
    Zuber J; Mathews DH
    Methods Mol Biol; 2024; 2726():1-13. PubMed ID: 38780725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence competition and optical melting measurements of RNA three-way multibranch loops provide a revised model for thermodynamic parameters.
    Liu B; Diamond JM; Mathews DH; Turner DH
    Biochemistry; 2011 Feb; 50(5):640-53. PubMed ID: 21133351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic study of internal loops in oligoribonucleotides: symmetric loops are more stable than asymmetric loops.
    Peritz AE; Kierzek R; Sugimoto N; Turner DH
    Biochemistry; 1991 Jul; 30(26):6428-36. PubMed ID: 1711369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides.
    Hudson GA; Bloomingdale RJ; Znosko BM
    RNA; 2013 Nov; 19(11):1474-82. PubMed ID: 24062573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
    Harmanci AO; Sharma G; Mathews DH
    BMC Bioinformatics; 2011 Apr; 12():108. PubMed ID: 21507242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects.
    Zuber J; Schroeder SJ; Sun H; Turner DH; Mathews DH
    Nucleic Acids Res; 2022 May; 50(9):5251-5262. PubMed ID: 35524574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the RNAstructure Software Package to Predict Conserved RNA Structures.
    Mathews DH
    Curr Protoc Bioinformatics; 2014 Jun; 46():12.4.1-12.4.22. PubMed ID: 24939126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated RNA secondary structure design using preselected sequences for helices and loops.
    Bellaousov S; Kayedkhordeh M; Peterson RJ; Mathews DH
    RNA; 2018 Nov; 24(11):1555-1567. PubMed ID: 30097542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N
    Sednev MV; Mykhailiuk V; Choudhury P; Halang J; Sloan KE; Bohnsack MT; Höbartner C
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15117-15121. PubMed ID: 30276938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of RNA nearest neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary structure prediction.
    Zuber J; Cabral BJ; McFadyen I; Mauger DM; Mathews DH
    RNA; 2018 Nov; 24(11):1568-1582. PubMed ID: 30104207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
    Sloma MF; Mathews DH
    RNA; 2016 Dec; 22(12):1808-1818. PubMed ID: 27852924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.