These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35277801)

  • 1. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores.
    Knox PP; Lukashev EP; Korvatovskiy BN; Strakhovskaya MG; Makhneva ZK; Bol'shakov MA; Paschenko VZ
    Photosynth Res; 2022 Aug; 153(1-2):103-112. PubMed ID: 35277801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the antiseptic octenidine on spectral characteristics and energy migration processes in photosystem II core complexes.
    Paschenko VZ; Lukashev EP; Mamedov MD; Korvatovskiy BN; Knox PP
    Photosynth Res; 2023 Jan; 155(1):93-105. PubMed ID: 36335236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of an assembly intermediate of photosynthetic LH1 antenna beyond B820 subunit. Significance for the assembly of photosynthetic LH1 antenna.
    Fiedor L; Scheer H
    J Biol Chem; 2005 Jun; 280(22):20921-6. PubMed ID: 15788392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of cationic antiseptics on the processes of light energy conversion in various photosynthetic pigment-protein complexes.
    Knox PP; Lukashev EP; Korvatovsky BN; Mamedov MD; Strakhovskaya MG; Gvozdev DA; Paschenko VZ; Rubin AB
    Photosynth Res; 2024 Aug; 161(1-2):5-19. PubMed ID: 38466457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation energy trapping and dissipation by Ni-substituted bacteriochlorophyll a in reconstituted LH1 complexes from Rhodospirillum rubrum.
    Lambrev PH; Miloslavina Y; van Stokkum IH; Stahl AD; Michalik M; Susz A; Tworzydło J; Fiedor J; Huhn G; Groot ML; van Grondelle R; Garab G; Fiedor L
    J Phys Chem B; 2013 Sep; 117(38):11260-71. PubMed ID: 23837465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated alpha- and beta-polypeptides, bacteriochlorophyll alpha, and carotenoid.
    Davis CM; Bustamante PL; Loach PA
    J Biol Chem; 1995 Mar; 270(11):5793-804. PubMed ID: 7890709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria.
    Razjivin A; Götze J; Lukashev E; Kozlovsky V; Ashikhmin A; Makhneva Z; Moskalenko A; Lokstein H; Paschenko V
    J Phys Chem B; 2021 Apr; 125(14):3538-3545. PubMed ID: 33818091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interfacing of Rhodospirillum rubrum chromatophores to a conducting support for capture and conversion of solar energy.
    Harrold JW; Woronowicz K; Lamptey JL; Awong J; Baird J; Moshar A; Vittadello M; Falkowski PG; Niederman RA
    J Phys Chem B; 2013 Sep; 117(38):11249-59. PubMed ID: 23789750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    J Phys Chem B; 2008 Aug; 112(31):9467-75. PubMed ID: 18613723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction center.
    Gerken U; Lupo D; Tietz C; Wrachtrup J; Ghosh R
    Biochemistry; 2003 Sep; 42(35):10354-60. PubMed ID: 12950162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy.
    Qian P; Addlesee HA; Ruban AV; Wang P; Bullough PA; Hunter CN
    J Biol Chem; 2003 Jun; 278(26):23678-85. PubMed ID: 12719425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode.
    Suemori Y; Nagata M; Nakamura Y; Nakagawa K; Okuda A; Inagaki J; Shinohara K; Ogawa M; Iida K; Dewa T; Yamashita K; Gardiner A; Cogdell RJ; Nango M
    Photosynth Res; 2006 Oct; 90(1):17-21. PubMed ID: 17111238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing binding site of bacteriochlorophyll a and carotenoid in the reconstituted LH1 complex from Rhodospirillum rubrum S1 by Stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    Photosynth Res; 2008; 95(2-3):339-44. PubMed ID: 17912603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction center H subunit is not required for high levels of light-harvesting complex 1 in Rhodospirillum rubrum mutants.
    Lupo D; Ghosh R
    J Bacteriol; 2004 Sep; 186(17):5585-95. PubMed ID: 15317762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy pathways in the photosynthetic units of reaction center LM- and H-subunit deletion mutants of Rhodospirillum rubrum.
    Amarie S; Lupo D; Lenz MO; Saegesser R; Ghosh R; Wachtveitl J
    Photosynth Res; 2010 Mar; 103(3):141-51. PubMed ID: 20099080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Dipyridamole on Membrane Energization and Energy Transfer in Chromatophores of Rba. sphaeroides.
    Knox PP; Lukashev EP; Korvatovskii BN; Seifullina NK; Goryachev SN; Allakhverdiev ES; Paschenko VZ
    Biochemistry (Mosc); 2022 Oct; 87(10):1138-1148. PubMed ID: 36273882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. III. Basic structure of the photosynthetic unit and its relation to other bacteriochlorophyll forms.
    Nakamoto S; Kataoka M; Ueki T
    J Biochem; 1984 Dec; 96(6):1831-9. PubMed ID: 6442292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.