BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35277899)

  • 1. Systemic silencing of an endogenous plant gene by two classes of mobile 21-nucleotide artificial small RNAs.
    Cisneros AE; de la Torre-Montaña A; Carbonell A
    Plant J; 2022 May; 110(4):1166-1181. PubMed ID: 35277899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection.
    Carbonell A; Daròs JA
    Mol Plant Pathol; 2017 Jun; 18(5):746-753. PubMed ID: 28026103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants.
    Cisneros AE; Carbonell A
    Plants (Basel); 2020 May; 9(6):. PubMed ID: 32466363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants.
    Carbonell A
    Methods Mol Biol; 2019; 1932():247-260. PubMed ID: 30701506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis.
    Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC
    Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates.
    Carbonell A; López C; Daròs JA
    Mol Plant Microbe Interact; 2019 Feb; 32(2):142-156. PubMed ID: 30070616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance.
    Carbonell A; Lisón P; Daròs JA
    Plant J; 2019 Nov; 100(4):720-737. PubMed ID: 31350772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs.
    López-Dolz L; Spada M; Daròs JA; Carbonell A
    Nucleic Acids Res; 2020 Jun; 48(11):6234-6250. PubMed ID: 32396204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants.
    Carbonell A; Daròs JA
    Methods Mol Biol; 2019; 2028():231-246. PubMed ID: 31228118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana.
    Lunardon A; Kariuki SM; Axtell MJ
    Plant J; 2021 May; 106(4):1087-1104. PubMed ID: 33655542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana.
    de Felippes FF; Ott F; Weigel D
    Nucleic Acids Res; 2011 Apr; 39(7):2880-9. PubMed ID: 21134910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors.
    Cisneros AE; Martín-García T; Primc A; Kuziuta W; Sánchez-Vicente J; Aragonés V; Daròs JA; Carbonell A
    Nucleic Acids Res; 2023 Oct; 51(19):10719-10736. PubMed ID: 37713607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana.
    Schwab R; Maizel A; Ruiz-Ferrer V; Garcia D; Bayer M; Crespi M; Voinnet O; Martienssen RA
    PLoS One; 2009 Jun; 4(6):e5980. PubMed ID: 19543387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of target site location and sequence complementarity in trans-acting siRNA formation in Arabidopsis.
    Zhang C; Ng DW; Lu J; Chen ZJ
    Plant J; 2012 Jan; 69(2):217-26. PubMed ID: 21910773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).
    Ramesh SV
    Mol Biotechnol; 2013 Sep; 55(1):87-100. PubMed ID: 23381873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of transitivity in plant RNA silencing.
    Choudhary S; Thakur S; Bhardwaj P
    Mol Biol Rep; 2019 Aug; 46(4):4645-4660. PubMed ID: 31098805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10- to 17-Nucleotide "Tiny" RNAs.
    Baldrich P; Rutter BD; Karimi HZ; Podicheti R; Meyers BC; Innes RW
    Plant Cell; 2019 Feb; 31(2):315-324. PubMed ID: 30705133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells.
    Molnar A; Melnyk CW; Bassett A; Hardcastle TJ; Dunn R; Baulcombe DC
    Science; 2010 May; 328(5980):872-5. PubMed ID: 20413459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.