These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 35278426)
41. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
42. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. Misiewicz J; Afonin S; Grage SL; van den Berg J; Strandberg E; Wadhwani P; Ulrich AS J Biomol NMR; 2015 Apr; 61(3-4):287-98. PubMed ID: 25616492 [TBL] [Abstract][Full Text] [Related]
43. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Ramamoorthy A; Thennarasu S; Lee DK; Tan A; Maloy L Biophys J; 2006 Jul; 91(1):206-16. PubMed ID: 16603496 [TBL] [Abstract][Full Text] [Related]
44. NMR techniques for investigating antimicrobial peptides in model membranes and bacterial cells. Sani MA; Rajput S; Keizer DW; Separovic F Methods; 2024 Apr; 224():10-20. PubMed ID: 38295893 [TBL] [Abstract][Full Text] [Related]
45. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
46. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626 [TBL] [Abstract][Full Text] [Related]
47. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
48. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Lee DK; Bhunia A; Kotler SA; Ramamoorthy A Biochemistry; 2015 Mar; 54(10):1897-907. PubMed ID: 25715195 [TBL] [Abstract][Full Text] [Related]
49. Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Bucki R; Janmey PA Antimicrob Agents Chemother; 2006 Sep; 50(9):2932-40. PubMed ID: 16940084 [TBL] [Abstract][Full Text] [Related]
50. Interaction of aurein 1.2 and its analogue with DPPC lipid bilayer. Sajjadiyan Z; Cheraghi N; Mohammadinejad S; Hassani L J Biol Phys; 2017 Mar; 43(1):127-137. PubMed ID: 28130642 [TBL] [Abstract][Full Text] [Related]
51. Recent progress on the application of Booth V; Warschawski DE; Santisteban NP; Laadhari M; Marcotte I Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1500-1511. PubMed ID: 28844739 [TBL] [Abstract][Full Text] [Related]
52. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
54. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. Wi S; Kim C J Phys Chem B; 2008 Sep; 112(36):11402-14. PubMed ID: 18700738 [TBL] [Abstract][Full Text] [Related]
55. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Aisenbrey C; Marquette A; Bechinger B Adv Exp Med Biol; 2019; 1117():33-64. PubMed ID: 30980352 [TBL] [Abstract][Full Text] [Related]
56. Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Rončević T; Gerdol M; Mardirossian M; Maleš M; Cvjetan S; Benincasa M; Maravić A; Gajski G; Krce L; Aviani I; Hrabar J; Trumbić Ž; Derks M; Pallavicini A; Weingarth M; Zoranić L; Tossi A; Mladineo I Acta Biomater; 2022 Jul; 146():131-144. PubMed ID: 35470073 [TBL] [Abstract][Full Text] [Related]
57. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. Tang M; Waring AJ; Hong M J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480 [TBL] [Abstract][Full Text] [Related]
58. Controls and constrains of the membrane disrupting action of Aurein 1.2. Shahmiri M; Enciso M; Mechler A Sci Rep; 2015 Nov; 5():16378. PubMed ID: 26574052 [TBL] [Abstract][Full Text] [Related]
59. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions? Radchenko DS; Kattge S; Kara S; Ulrich AS; Afonin S Biochim Biophys Acta; 2016 Sep; 1858(9):2019-2027. PubMed ID: 27267703 [TBL] [Abstract][Full Text] [Related]
60. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. Gong H; Zhang J; Hu X; Li Z; Fa K; Liu H; Waigh TA; McBain A; Lu JR ACS Appl Mater Interfaces; 2019 Sep; 11(38):34609-34620. PubMed ID: 31448889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]