These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35278477)

  • 1. Ribosome-nascent Chain Interaction Regulates N-terminal Protein Modification.
    Yang CI; Kim J; Shan SO
    J Mol Biol; 2022 May; 434(9):167535. PubMed ID: 35278477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing and specificity of cotranslational nascent protein modification in bacteria.
    Yang CI; Hsieh HH; Shan SO
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23050-23060. PubMed ID: 31666319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit.
    Bhakta S; Akbar S; Sengupta J
    J Mol Biol; 2019 Mar; 431(7):1426-1439. PubMed ID: 30753870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Mimicry of SecA and Signal Recognition Particle Binding to the Bacterial Ribosome.
    Knüpffer L; Fehrenbach C; Denks K; Erichsen V; Petriman NA; Koch HG
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal recognition particle prevents N-terminal processing of bacterial membrane proteins.
    Ranjan A; Mercier E; Bhatt A; Wintermeyer W
    Nat Commun; 2017 May; 8():15562. PubMed ID: 28516953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global profiling of SRP interaction with nascent polypeptides.
    Schibich D; Gloge F; Pöhner I; Björkholm P; Wade RC; von Heijne G; Bukau B; Kramer G
    Nature; 2016 Aug; 536(7615):219-23. PubMed ID: 27487212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.
    Hsieh HH; Lee JH; Chandrasekar S; Shan SO
    Nat Commun; 2020 Nov; 11(1):5840. PubMed ID: 33203865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome.
    Powers T; Walter P
    Curr Biol; 1996 Mar; 6(3):331-8. PubMed ID: 8805251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome.
    Klein M; Wild K; Sinning I
    Nat Commun; 2024 Sep; 15(1):7681. PubMed ID: 39227397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotranslational signal-independent SRP preloading during membrane targeting.
    Chartron JW; Hunt KC; Frydman J
    Nature; 2016 Aug; 536(7615):224-8. PubMed ID: 27487213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes.
    del Alamo M; Hogan DJ; Pechmann S; Albanese V; Brown PO; Frydman J
    PLoS Biol; 2011 Jul; 9(7):e1001100. PubMed ID: 21765803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAC guides a ribosomal multienzyme complex for nascent protein processing.
    Lentzsch AM; Yudin D; Gamerdinger M; Chandrasekar S; Rabl L; Scaiola A; Deuerling E; Ban N; Shan SO
    Nature; 2024 Sep; 633(8030):718-724. PubMed ID: 39169182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment.
    Lin KF; Sun CS; Huang YC; Chan SI; Koubek J; Wu TH; Huang JJ
    Biophys J; 2012 Jun; 102(12):2818-27. PubMed ID: 22735532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes.
    Gamerdinger M; Deuerling E
    Trends Biochem Sci; 2024 Feb; 49(2):105-118. PubMed ID: 37919225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting.
    Ariosa A; Lee JH; Wang S; Saraogi I; Shan SO
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):E3169-78. PubMed ID: 26056263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.
    Sandikci A; Gloge F; Martinez M; Mayer MP; Wade R; Bukau B; Kramer G
    Nat Struct Mol Biol; 2013 Jul; 20(7):843-50. PubMed ID: 23770820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal protein modifications: Bringing back into play the ribosome.
    Giglione C; Fieulaine S; Meinnel T
    Biochimie; 2015 Jul; 114():134-46. PubMed ID: 25450248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatility of trigger factor interactions with ribosome-nascent chain complexes.
    Lakshmipathy SK; Gupta R; Pinkert S; Etchells SA; Hartl FU
    J Biol Chem; 2010 Sep; 285(36):27911-23. PubMed ID: 20595383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the interplay of protein biogenesis factors at the ribosome exit site reveals new role for NAC.
    Nyathi Y; Pool MR
    J Cell Biol; 2015 Jul; 210(2):287-301. PubMed ID: 26195668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.