These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 35278518)

  • 1. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA).
    Dhania S; Bernela M; Rani R; Parsad M; Grewal S; Kumari S; Thakur R
    Int J Biol Macromol; 2022 May; 208():243-259. PubMed ID: 35278518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering.
    Pulingam T; Appaturi JN; Parumasivam T; Ahmad A; Sudesh K
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering.
    Elmowafy E; Abdal-Hay A; Skouras A; Tiboni M; Casettari L; Guarino V
    Expert Rev Med Devices; 2019 Jun; 16(6):467-482. PubMed ID: 31058550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications.
    Koller M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29419813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material.
    Rathbone S; Furrer P; Lübben J; Zinn M; Cartmell S
    J Biomed Mater Res A; 2010 Jun; 93(4):1391-403. PubMed ID: 19911384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives.
    Li J; Zhang X; Udduttula A; Fan ZS; Chen JH; Sun AR; Zhang P
    Front Bioeng Biotechnol; 2021; 9():763031. PubMed ID: 34993185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions.
    Singh AK; Srivastava JK; Chandel AK; Sharma L; Mallick N; Singh SP
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2007-2032. PubMed ID: 30645689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations.
    Ren ZW; Wang ZY; Ding YW; Dao JW; Li HR; Ma X; Yang XY; Zhou ZQ; Liu JX; Mi CH; Gao ZC; Pei H; Wei DX
    Biomater Sci; 2023 Sep; 11(18):6013-6034. PubMed ID: 37522312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application.
    Ke Y; Zhang XY; Ramakrishna S; He LM; Wu G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1107-1119. PubMed ID: 27772711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds.
    Sanhueza C; Acevedo F; Rocha S; Villegas P; Seeger M; Navia R
    Int J Biol Macromol; 2019 Mar; 124():102-110. PubMed ID: 30445089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary polyhydroxyalkanoate systems for soft tissue engineering.
    Lukasiewicz B; Basnett P; Nigmatullin R; Matharu R; Knowles JC; Roy I
    Acta Biomater; 2018 Apr; 71():225-234. PubMed ID: 29501818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous magnesium-based scaffolds for tissue engineering.
    Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering.
    Goonoo N; Bhaw-Luximon A; Passanha P; Esteves SR; Jhurry D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1667-1684. PubMed ID: 27080439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration.
    Wei DX; Dao JW; Chen GQ
    Adv Mater; 2018 Aug; 30(31):e1802273. PubMed ID: 29920804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications.
    Grande D; Ramier J; Versace DL; Renard E; Langlois V
    N Biotechnol; 2017 Jul; 37(Pt A):129-137. PubMed ID: 27338013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.
    Bello AB; Kim D; Kim D; Park H; Lee SH
    Tissue Eng Part B Rev; 2020 Apr; 26(2):164-180. PubMed ID: 31910095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current approaches to electrospun nanofibers for tissue engineering.
    Rim NG; Shin CS; Shin H
    Biomed Mater; 2013 Feb; 8(1):014102. PubMed ID: 23472258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.