These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35279161)

  • 1. Oxidative cleavage of cellulose in the horse gut.
    Liu N; Yu W; Guo X; Chen J; Xia D; Yu J; Li D
    Microb Cell Fact; 2022 Mar; 21(1):38. PubMed ID: 35279161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation.
    Zhang R
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3229-3243. PubMed ID: 32076777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery.
    Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H
    Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
    Isaksen T; Westereng B; Aachmann FL; Agger JW; Kracher D; Kittl R; Ludwig R; Haltrich D; Eijsink VG; Horn SJ
    J Biol Chem; 2014 Jan; 289(5):2632-42. PubMed ID: 24324265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina.
    Bennati-Granier C; Garajova S; Champion C; Grisel S; Haon M; Zhou S; Fanuel M; Ropartz D; Rogniaux H; Gimbert I; Record E; Berrin JG
    Biotechnol Biofuels; 2015; 8():90. PubMed ID: 26136828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity.
    Wu S; Tian J; Xie N; Adnan M; Wang J; Liu G
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):15. PubMed ID: 35418300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of cellulose fibers using LPMOs with varying allomorphic substrate preferences, oxidative regioselectivities, and domain structures.
    Støpamo FG; Sulaeva I; Budischowsky D; Rahikainen J; Marjamaa K; Potthast A; Kruus K; Eijsink VGH; Várnai A
    Carbohydr Polym; 2024 Apr; 330():121816. PubMed ID: 38368098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose.
    Sun P; Valenzuela SV; Chunkrua P; Javier Pastor FI; Laurent CVFP; Ludwig R; van Berkel WJH; Kabel MA
    ACS Sustain Chem Eng; 2021 Oct; 9(42):14124-14133. PubMed ID: 34722005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
    Zhang R; Liu Y; Zhang Y; Feng D; Hou S; Guo W; Niu K; Jiang Y; Han L; Sindhu L; Fang X
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5739-5750. PubMed ID: 31152202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in
    Adnan M; Ma X; Xie Y; Waheed A; Liu G
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An AA9-LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides.
    Jagadeeswaran G; Gainey L; Mort AJ
    AMB Express; 2018 Oct; 8(1):171. PubMed ID: 30328527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9.
    Lenfant N; Hainaut M; Terrapon N; Drula E; Lombard V; Henrissat B
    Carbohydr Res; 2017 Aug; 448():166-174. PubMed ID: 28434716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.