These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35279161)

  • 21. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.
    Westereng B; Arntzen MØ; Aachmann FL; Várnai A; Eijsink VG; Agger JW
    J Chromatogr A; 2016 May; 1445():46-54. PubMed ID: 27059395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases.
    Liu Y; Ma W; Fang X
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea.
    Zarattini M; Corso M; Kadowaki MA; Monclaro A; Magri S; Milanese I; Jolivet S; de Godoy MO; Hermans C; Fagard M; Cannella D
    Commun Biol; 2021 Jun; 4(1):727. PubMed ID: 34117349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity.
    Monclaro AV; Petrović DM; Alves GSC; Costa MMC; Midorikawa GEO; Miller RNG; Filho EXF; Eijsink VGH; Várnai A
    PLoS One; 2020; 15(7):e0235642. PubMed ID: 32640001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PsAA9A, a C1-specific AA9 lytic polysaccharide monooxygenase from the white-rot basidiomycete Pycnoporus sanguineus.
    Garrido MM; Landoni M; Sabbadin F; Valacco MP; Couto A; Bruce NC; Wirth SA; Campos E
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9631-9643. PubMed ID: 32965563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a novel AA16 lytic polysaccharide monooxygenase from Thermothelomyces thermophilus and comparison of biochemical properties with an LPMO from AA9 family.
    Chorozian K; Karnaouri A; Tryfona T; Kondyli NG; Karantonis A; Topakas E
    Carbohydr Polym; 2024 Oct; 342():122387. PubMed ID: 39048228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production.
    Moreau C; Tapin-Lingua S; Grisel S; Gimbert I; Le Gall S; Meyer V; Petit-Conil M; Berrin JG; Cathala B; Villares A
    Biotechnol Biofuels; 2019; 12():156. PubMed ID: 31249619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases.
    Sun P; Laurent CVFP; Boerkamp VJP; van Erven G; Ludwig R; van Berkel WJH; Kabel MA
    ChemSusChem; 2022 Jan; 15(2):e202102203. PubMed ID: 34859958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of a C1/C4-oxidizing AA9 lytic polysaccharide monooxygenase from the thermophilic fungus Malbranchea cinnamomea.
    Mazurkewich S; Seveso A; Hüttner S; Brändén G; Larsbrink J
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1019-1026. PubMed ID: 34342275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family.
    Morgenstern I; Powlowski J; Tsang A
    Brief Funct Genomics; 2014 Nov; 13(6):471-81. PubMed ID: 25217478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown.
    Monclaro AV; Filho EXF
    Int J Biol Macromol; 2017 Sep; 102():771-778. PubMed ID: 28450248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates.
    Østby H; Christensen IA; Hennum K; Várnai A; Buchinger E; Grandal S; Courtade G; Hegnar OA; Aachmann FL; Eijsink VGH
    Sci Rep; 2023 Oct; 13(1):17373. PubMed ID: 37833388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases.
    Qin X; Zou J; Yang K; Li J; Wang X; Tu T; Wang Y; Yao B; Huang H; Luo H
    Bioresour Technol; 2022 Nov; 364():128027. PubMed ID: 36174898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation.
    Sun P; Laurent CVFP; Scheiblbrandner S; Frommhagen M; Kouzounis D; Sanders MG; van Berkel WJH; Ludwig R; Kabel MA
    Biotechnol Biofuels; 2020; 13():95. PubMed ID: 32514307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometric fragmentation patterns discriminate C1- and C4-oxidised cello-oligosaccharides from their non-oxidised and reduced forms.
    Sun P; Frommhagen M; Kleine Haar M; van Erven G; Bakx EJ; van Berkel WJH; Kabel MA
    Carbohydr Polym; 2020 Apr; 234():115917. PubMed ID: 32070536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action of AA9 lytic polysaccharide monooxygenase enzymes on different cellulose allomorphs.
    Grellier M; Moreau C; Beaugrand J; Grisel S; Berrin JG; Cathala B; Villares A
    Int J Biol Macromol; 2024 Aug; 275(Pt 2):133429. PubMed ID: 38944074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.