BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35279625)

  • 1. Towards improving fast adversarial training in multi-exit network.
    Chen S; Shen H; Wang R; Wang X
    Neural Netw; 2022 Jun; 150():1-11. PubMed ID: 35279625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation diversity certificates robust generalization.
    Qian Z; Zhang S; Huang K; Wang Q; Yi X; Gu B; Xiong H
    Neural Netw; 2024 Apr; 172():106117. PubMed ID: 38232423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Adversarial Training With Adaptive Step Size.
    Huang Z; Fan Y; Liu C; Zhang W; Zhang Y; Salzmann M; Susstrunk S; Wang J
    IEEE Trans Image Process; 2023; 32():6102-6114. PubMed ID: 37883291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Fast Adversarial Training With Prior-Guided Knowledge.
    Jia X; Zhang Y; Wei X; Wu B; Ma K; Wang J; Cao X
    IEEE Trans Pattern Anal Mach Intell; 2024 Mar; PP():. PubMed ID: 38530739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification.
    Wang D; Jin W; Wu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Adversarial Robustness with Early Exit Ensembles.
    Qendro L; Mascolo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():313-316. PubMed ID: 36086386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Adversarial Robustness via Attention and Adversarial Logit Pairing.
    Li X; Goodman D; Liu J; Wei T; Dou D
    Front Artif Intell; 2021; 4():752831. PubMed ID: 35156010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive Diversified Augmentation for General Robustness of DNNs: A Unified Approach.
    Yu H; Liu A; Li G; Yang J; Zhang C
    IEEE Trans Image Process; 2021; 30():8955-8967. PubMed ID: 34699360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards evaluating the robustness of deep diagnostic models by adversarial attack.
    Xu M; Zhang T; Li Z; Liu M; Zhang D
    Med Image Anal; 2021 Apr; 69():101977. PubMed ID: 33550005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting adversarial robustness via self-paced adversarial training.
    He L; Ai Q; Yang X; Ren Y; Wang Q; Xu Z
    Neural Netw; 2023 Oct; 167():706-714. PubMed ID: 37729786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regularization method to improve adversarial robustness of neural networks for ECG signal classification.
    Ma L; Liang L
    Comput Biol Med; 2022 May; 144():105345. PubMed ID: 35240379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing robustness in video recognition models: Sparse adversarial attacks and beyond.
    Mu R; Marcolino L; Ni Q; Ruan W
    Neural Netw; 2024 Mar; 171():127-143. PubMed ID: 38091756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of GAN-Based Model for Adversarial Training.
    Zhao W; Mahmoud QH; Alwidian S
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adversarial parameter defense by multi-step risk minimization.
    Zhang Z; Luo R; Ren X; Su Q; Li L; Sun X
    Neural Netw; 2021 Dec; 144():154-163. PubMed ID: 34500254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Adversarial Robustness for Multi-Mode Data through Metric Learning.
    Khan S; Chen JC; Liao WH; Chen CS
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EIFDAA: Evaluation of an IDS with function-discarding adversarial attacks in the IIoT.
    Li S; Wang J; Wang Y; Zhou G; Zhao Y
    Heliyon; 2023 Feb; 9(2):e13520. PubMed ID: 36846700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating Accuracy-Robustness Trade-Off Via Balanced Multi-Teacher Adversarial Distillation.
    Zhao S; Wang X; Wei X
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; PP():. PubMed ID: 38889035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Intrinsic Adversarial Robustness Through Probabilistic Training.
    Dong J; Yang L; Wang Y; Xie X; Lai J
    IEEE Trans Image Process; 2023; 32():3862-3872. PubMed ID: 37428673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training Robust Deep Neural Networks via Adversarial Noise Propagation.
    Liu A; Liu X; Yu H; Zhang C; Liu Q; Tao D
    IEEE Trans Image Process; 2021; 30():5769-5781. PubMed ID: 34161231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularization Meets Enhanced Multi-Stage Fusion Features: Making CNN More Robust against White-Box Adversarial Attacks.
    Zhang J; Maeda K; Ogawa T; Haseyama M
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.