These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35279954)

  • 1. Low-Loss Tunable Infrared Plasmons in the High-Mobility Perovskite (Ba,La)SnO
    Yang H; Konečná A; Xu X; Cheong SW; Garfunkel E; García de Abajo FJ; Batson PE
    Small; 2022 Apr; 18(16):e2106897. PubMed ID: 35279954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS.
    Yang H; Konečná A; Xu X; Cheong SW; Batson PE; García de Abajo FJ; Garfunkel E
    ACS Nano; 2022 Nov; 16(11):18795-18805. PubMed ID: 36317944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Threading Dislocations on the Electronic Structure of La-Doped BaSnO
    Kang J; Lee JH; Lee HK; Kim KT; Kim JH; Maeng MJ; Hong JA; Park Y; Kim KH
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InN.
    Askari S; Mariotti D; Stehr JE; Benedikt J; Keraudy J; Helmersson U
    Nano Lett; 2018 Sep; 18(9):5681-5687. PubMed ID: 30137994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes.
    Lagos MJ; Bicket IC; Mousavi M SS; Botton GA
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i174-i199. PubMed ID: 35275180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.
    Wu Y; Li G; Camden JP
    Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy.
    Cherqui C; Thakkar N; Li G; Camden JP; Masiello DJ
    Annu Rev Phys Chem; 2016 May; 67():331-57. PubMed ID: 27215817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Low Loss 1D Surface Plasmons in InAs Nanowires.
    Zhou Y; Chen R; Wang J; Huang Y; Li M; Xing Y; Duan J; Chen J; Farrell JD; Xu HQ; Chen J
    Adv Mater; 2018 Aug; 30(35):e1802551. PubMed ID: 29992734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy.
    Fujiyoshi Y; Nemoto T; Kurata H
    Ultramicroscopy; 2017 Apr; 175():116-120. PubMed ID: 28236741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Coupling between ZnO Excitons and Localized Surface Plasmons of Silver Nanoparticles Studied by STEM-EELS.
    Wei J; Jiang N; Xu J; Bai X; Liu J
    Nano Lett; 2015 Sep; 15(9):5926-31. PubMed ID: 26237659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime.
    Hachtel JA; Lupini AR; Idrobo JC
    Sci Rep; 2018 Apr; 8(1):5637. PubMed ID: 29618757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Dirac plasmons in a topological insulator.
    Di Pietro P; Ortolani M; Limaj O; Di Gaspare A; Giliberti V; Giorgianni F; Brahlek M; Bansal N; Koirala N; Oh S; Calvani P; Lupi S
    Nat Nanotechnol; 2013 Aug; 8(8):556-60. PubMed ID: 23872838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron energy-loss spectroscopy of branched gap plasmon resonators.
    Raza S; Esfandyarpour M; Koh AL; Mortensen NA; Brongersma ML; Bozhevolnyi SI
    Nat Commun; 2016 Dec; 7():13790. PubMed ID: 27982030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers.
    Guozhi J; Peng W; Yanbang Z; Kai C
    Sci Rep; 2016 May; 6():25884. PubMed ID: 27172827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable and low-loss correlated plasmons in Mott-like insulating oxides.
    Asmara TC; Wan D; Zhao Y; Majidi MA; Nelson CT; Scott MC; Cai Y; Yan B; Schmidt D; Yang M; Zhu T; Trevisanutto PE; Motapothula MR; Feng YP; Breese MBH; Sherburne M; Asta M; Minor A; Venkatesan T; Rusydi A
    Nat Commun; 2017 May; 8():15271. PubMed ID: 28497786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Copper Nanostructures Sustain High-Quality Plasmons?
    Mkhitaryan V; March K; Tseng EN; Li X; Scarabelli L; Liz-Marzán LM; Chen SY; Tizei LHG; Stéphan O; Song JM; Kociak M; García de Abajo FJ; Gloter A
    Nano Lett; 2021 Mar; 21(6):2444-2452. PubMed ID: 33651617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.