These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 3528037)
21. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis. Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050 [TBL] [Abstract][Full Text] [Related]
22. A pilot evaluation study of high resolution digital thermal imaging in the assessment of burn depth. Hardwicke J; Thomson R; Bamford A; Moiemen N Burns; 2013 Feb; 39(1):76-81. PubMed ID: 22652476 [TBL] [Abstract][Full Text] [Related]
23. Burn depth evaluation with fluorometry: is it really definitive? Black KS; Hewitt CW; Miller DM; Ramos E; Halloran J; Bressler V; Martinez SE; Achauer BM J Burn Care Rehabil; 1986; 7(4):313-7. PubMed ID: 3312213 [TBL] [Abstract][Full Text] [Related]
24. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing. Foubert P; Doyle-Eisele M; Gonzalez A; Berard F; Weber W; Zafra D; Alfonso Z; Zhao S; Tenenhaus M; Fraser JK Int J Radiat Biol; 2017 Mar; 93(3):340-350. PubMed ID: 27690716 [TBL] [Abstract][Full Text] [Related]
25. Measurement of surface temperature as an aid to the diagnosis of burn depth. Wyllie FJ; Sutherland AB Burns; 1991 Apr; 17(2):123-7. PubMed ID: 2054069 [TBL] [Abstract][Full Text] [Related]
26. Preparation of Partial-Thickness Burn Wounds in Rodents Using a New Experimental Burning Device. Sakamoto M; Morimoto N; Ogino S; Jinno C; Kawaguchi A; Kawai K; Suzuki S Ann Plast Surg; 2016 Jun; 76(6):652-8. PubMed ID: 27176561 [TBL] [Abstract][Full Text] [Related]
27. Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth. Bauer JA; Sauer T Burns Incl Therm Inj; 1989 Feb; 15(1):49-51. PubMed ID: 2655832 [TBL] [Abstract][Full Text] [Related]
28. Use of laser Doppler flowmetry for estimation of the depth of burns. Park DH; Hwang JW; Jang KS; Han DG; Ahn KY; Baik BS Plast Reconstr Surg; 1998 May; 101(6):1516-23. PubMed ID: 9583481 [TBL] [Abstract][Full Text] [Related]
29. [Effects of minimally invasive tangential excision in treating deep partial-thickness burn wounds on trunk and limbs in pediatric patients in the early stage post burn]. Li F; Chi YF; Hu Q; Yin KN; Liu W; Chen Q; Zhang QX; Chen X; Cao FC; Liang ZL; Sun YJ Zhonghua Shao Shang Za Zhi; 2018 Oct; 34(10):714-718. PubMed ID: 30369140 [No Abstract] [Full Text] [Related]
31. Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. Mazhar A; Saggese S; Pollins AC; Cardwell NL; Nanney L; Cuccia DJ J Biomed Opt; 2014 Aug; 19(8):086019. PubMed ID: 25147961 [TBL] [Abstract][Full Text] [Related]
32. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Hoeksema H; Van de Sijpe K; Tondu T; Hamdi M; Van Landuyt K; Blondeel P; Monstrey S Burns; 2009 Feb; 35(1):36-45. PubMed ID: 18952377 [TBL] [Abstract][Full Text] [Related]
33. Determination of burn depth with noncontact ultrasonography. Iraniha S; Cinat ME; VanderKam VM; Boyko A; Lee D; Jones J; Achauer BM J Burn Care Rehabil; 2000; 21(4):333-8. PubMed ID: 10935815 [TBL] [Abstract][Full Text] [Related]
34. Alteration of biomechanical properties of burned skin. Held M; Rahmanian-Schwarz A; Rothenberger J; Schiefer J; Janghorban Esfahani B; Schaller HE; Jaminet P Burns; 2015 Jun; 41(4):789-95. PubMed ID: 25451148 [TBL] [Abstract][Full Text] [Related]
35. Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice. Vo LT; Anikijenko P; McLaren WJ; Delaney PM; Barkla DH; King RG J Trauma; 2001 Jul; 51(1):98-104. PubMed ID: 11468475 [TBL] [Abstract][Full Text] [Related]
36. Noninvasive Techniques for the Determination of Burn Severity in Real Time. Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653 [TBL] [Abstract][Full Text] [Related]
37. Reflective terahertz imaging of porcine skin burns. Taylor ZD; Singh RS; Culjat MO; Suen JY; Grundfest WS; Lee H; Brown ER Opt Lett; 2008 Jun; 33(11):1258-60. PubMed ID: 18516193 [TBL] [Abstract][Full Text] [Related]
38. Burn depth assessments by photoacoustic imaging and laser Doppler imaging. Ida T; Iwazaki H; Kawaguchi Y; Kawauchi S; Ohkura T; Iwaya K; Tsuda H; Saitoh D; Sato S; Iwai T Wound Repair Regen; 2016 Mar; 24(2):349-55. PubMed ID: 26487320 [TBL] [Abstract][Full Text] [Related]
39. Dielectric measurement in experimental burns: a new tool for burn depth determination? Papp A; Lahtinen T; Härmä M; Nuutinen J; Uusaro A; Alhava E Plast Reconstr Surg; 2006 Mar; 117(3):889-98; discussion 899-901. PubMed ID: 16525281 [TBL] [Abstract][Full Text] [Related]
40. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burmeister DM; Ponticorvo A; Yang B; Becerra SC; Choi B; Durkin AJ; Christy RJ Burns; 2015 Sep; 41(6):1242-52. PubMed ID: 26138371 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]