These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35280863)

  • 21. Application of computed tomography-based radiomics signature analysis in the prediction of the response of small cell lung cancer patients to first-line chemotherapy.
    Wei H; Yang F; Liu Z; Sun S; Xu F; Liu P; Li H; Liu Q; Qiao X; Wang X
    Exp Ther Med; 2019 May; 17(5):3621-3629. PubMed ID: 30988745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma.
    Liu G; Xu Z; Zhang Y; Jiang B; Zhang L; Wang L; de Bock GH; Vliegenthart R; Xie X
    Front Oncol; 2021; 11():692329. PubMed ID: 34249741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
    Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C
    Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-parameter MRI radiomic features may contribute to predict progression-free survival in patients with WHO grade II meningiomas.
    Zeng Q; Tian Z; Dong F; Shi F; Xu P; Zhang J; Ling C; Guo Z
    Front Oncol; 2024; 14():1246730. PubMed ID: 39007097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Value of pre-therapy
    Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients.
    Song L; Zhu Z; Mao L; Li X; Han W; Du H; Wu H; Song W; Jin Z
    Front Oncol; 2020; 10():369. PubMed ID: 32266148
    [No Abstract]   [Full Text] [Related]  

  • 28. Combination of clinical, radiomic, and "delta" radiomic features in survival prediction of metastatic gastroesophageal adenocarcinoma.
    Krishna S; Sertic A; Liu ZA; Liu Z; Darling GE; Yeung J; Wong R; Chen EX; Kalimuthu S; Allen MJ; Suzuki C; Panov E; Ma LX; Bach Y; Jang RW; Swallow CJ; Brar S; Elimova E; Veit-Haibach P
    Front Oncol; 2023; 13():892393. PubMed ID: 37645426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas.
    Das SK; Fang KW; Xu L; Li B; Zhang X; Yang HF
    Sci Rep; 2021 May; 11(1):10829. PubMed ID: 34031529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiomic biomarkers from chest computed tomography are assistive in immunotherapy response prediction for non-small cell lung cancer.
    Schroeder KE; Acharya L; Mani H; Furqan M; Sieren JC
    Transl Lung Cancer Res; 2023 May; 12(5):1023-1033. PubMed ID: 37323179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiomics Approach to Prediction of Occult Mediastinal Lymph Node Metastasis of Lung Adenocarcinoma.
    Zhong Y; Yuan M; Zhang T; Zhang YD; Li H; Yu TF
    AJR Am J Roentgenol; 2018 Jul; 211(1):109-113. PubMed ID: 29667885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?
    Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X
    Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Radiomics Signature-Based Nomogram to Predict the Progression-Free Survival of Patients With Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization Plus Radiofrequency Ablation.
    Fang S; Lai L; Zhu J; Zheng L; Xu Y; Chen W; Wu F; Wu X; Chen M; Weng Q; Ji J; Zhao Z; Tu J
    Front Mol Biosci; 2021; 8():662366. PubMed ID: 34532340
    [No Abstract]   [Full Text] [Related]  

  • 35. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.
    Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y
    J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive Radiomic Models for the Chemotherapy Response in Non-Small-Cell Lung Cancer based on Computerized-Tomography Images.
    Chang R; Qi S; Yue Y; Zhang X; Song J; Qian W
    Front Oncol; 2021; 11():646190. PubMed ID: 34307127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [
    Nakajo M; Jinguji M; Tani A; Kikuno H; Hirahara D; Togami S; Kobayashi H; Yoshiura T
    Mol Imaging Biol; 2021 Oct; 23(5):756-765. PubMed ID: 33763816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy.
    Cozzi L; Dinapoli N; Fogliata A; Hsu WC; Reggiori G; Lobefalo F; Kirienko M; Sollini M; Franceschini D; Comito T; Franzese C; Scorsetti M; Wang PM
    BMC Cancer; 2017 Dec; 17(1):829. PubMed ID: 29207975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.